
CMSC 330: Organization of Programming
Languages

Lazy Evaluation and
Streams

CMSC 330 2

Call-by-Value

In call-by-value (cbv), arguments to functions are fully evaluated
before the function is invoked
• Also in OCaml, in let x = e1 in e2, the expression e1 is fully evaluated

before e2 is evaluated
C, C++, and Java also use call-by-value

int r = 0;

int add(int x, int y) { return r + x + y; }

int set_r(void) {
r = 3;
return 1;

}

add(set_r(), 2);

CMSC 330 3

Call-by-Value in Imperative Languages
In C, C++, and Java, call-by-value has another feature
• What does this program print?

• Cbv protects function arguments against modifications

void f(int x) {
x = 3;

}

int main() {
int x = 0;
f(x);
printf("%d\n", x);

}

0

CMSC 330 4

Call-by-Name
Call-by-name (cbn)
• First described in description of Algol (1960)
• Generalization of Lambda expressions
• Idea: In a function:

Let add x y = x+y
add (a*b) (c*d)

Then each use of x and y in the function definition is just a literal substitution
of the actual arguments, (a*b) and (c*d), respectively

• Implementation: Highly complex, inefficient, and provides little
improvement over other mechanisms

Example:
add (a*b) (c*d) =

(a*b) + (c*d) ç executed function

CMSC 330 5

Call-by-Name (cont.)

In call-by-name (cbn), arguments to functions are evaluated at
the last possible moment, just before they're needed

let add x y = x + y

let z = add (add 3 1) (add 4 1)

OCaml; cbv; arguments
evaluated here

Haskell; cbn; arguments
evaluated here

CMSC 330 6

Call-by-Name (cont.)

What would be an example where this
difference matters?

let cond p x y = if p then x else y
let rec loop n = loop n
let z = cond true 42 (loop 0)

cond p x y = if p then x else y
loop n = loop n
z = cond True 42 (loop 0)

OCaml; cbv; infinite recursion
at call

Haskell; cbn; never evaluated
because parameter is never used

CMSC 330 7

Two Cool Things to Do with CBN

CBN is also called lazy evaluation
CBV is also known as eager evaluation

Build control structures with functions

Build “infinite” data structures

let cond p x y = if p then x else y

integers n = n::(integers (n+1))
take 10 (integers 0) (* infinite loop in cbv *)

CMSC 330 8

Simulate CBN
Lazy Module: delays computation

module Lazy :
sig

type 'a t = 'a lazy_t
val force : 'a t -> 'a

end

A value of type 'a Lazy.t is a value of type 'a whose computation has been
delayed.

CMSC 330 9

Lazy Module
let add x y = x + y;;
val add : int -> int -> int
let g = lazy (add 10 20);;
val g : int lazy_t = <lazy>

Need the value? Force computation

Lazy.force g;;
- : int = 30

CMSC 330 10

Using Lazy Module
let add x y = x + y;;
let e1 = lazy (add 10 20);;
let e2 = lazy (add 1 2);;
let foo p e1 e2 =

Lazy.force (if p then e1 else e2);;

Type of foo:
bool -> 'a Lazy.t -> 'a Lazy.t -> 'a

foo true e1 e2;; (* will not eval e2 *)
- : int = 30

CMSC 330 11

Using Lazy Module
let rec foo n = foo n;;
foo 1 (* infinite loop)
let e1 = lazy (foo 1);; (* foo 1 is delayed *)
let e2 = lazy (add 1 2);;

let foo p e1 e2 =
Lazy.force (if p then e1 else e2);;

foo false e1 e2;; (* will not eval e1 *)
- : int = 3

Thunk
Lazy evaluation is implemented using thunks. A thunk is a function of the
form

fun () ->
Body of a function is not evaluated when the function is defined, but only
when it is applied. Thus function bodies are evaluated lazily.

CMSC 330 12

List.hd [];; (* eager evaluation *)
Exception: Failure "hd".

let f = fun () -> List.hd [];; (* computation delayed *)
val f : unit -> 'a = <fun> #
f ();;
Exception: Failure "hd".

CMSC 330 13

Streams

type stream = Nil | Cons of int * stream lazy_t;;

let rec ones = Cons(1, lazy ones);;
- val ones : stream = Cons (1, <cycle>) (* 1,1,1,1,… *)

let rec from n = Cons(n, lazy (from (n+1)));;
- val from : int -> stream

let nats = from 0;;
- val nats : stream = Cons (0, <lazy>) (* 0,1,2,3,4,5,… *)

A stream is an infinite list. Sometimes these are also called sequences,
delayed lists, or lazy lists.

Quiz 1

Length of nats

CMSC 330 14

A. 0
B. 10
C. infinite
D. 2

Quiz 1

Length of nats

CMSC 330 15

A. 0
B. 10
C. infinite
D. 2

Quiz 2

To evaluate a lazy expression e, we call

CMSC 330 16

A. Lazy.eval e
B. Eval e
C. Force e
D. Lazy.force e

Quiz 2

To evaluate a lazy expression e, we call

CMSC 330 17

A. Lazy.eval e
B. Eval e
C. Force e
D. Lazy.force e

CMSC 330 18

Streams cont.
type stream = Nil | Cons of int * stream lazy_t;;

let hd (s : stream) : int =
match s with
Nil -> failwith "hd"

| Cons (x, _) -> x

let tl (s : stream) : stream =
match s with
Nil -> failwith "tl"

| Cons (_, g) -> Lazy.force g (* get the tail by evaluating the thunk *)

CMSC 330 19

Streams cont.
#let rec ones = Cons(1, lazy ones);;
-val ones : stream = Cons (1, <cycle>)

(* take first n items from the stream *)
let rec take (s : stream) (n : int) : int list =

if n <= 0 then [] else
match s with

Nil -> []
| _ -> hd s :: take (tl s) (n - 1)

#let t = take nats 10;;
-val t : int list = [0; 1; 2; 3; 4; 5; 6; 7; 8; 9]

CMSC 330 20

Streams cont.
let rec map (f : int -> int) (s : stream) : stream =

match s with Nil -> Nil
| _ -> Cons (f (hd s), lazy (map f (tl s)))

let rec filter (f : int -> bool) (s : stream) : stream =
match s with Nil -> Nil
| Cons (x, g) ->

if f x then Cons (x, lazy (filter f (Lazy.force g)))
else filter f (Lazy.force g)

CMSC 330 21

Streams: natural numbers

let square n = n * n;;

take (map square nats) 10;
- : int list = [0; 1; 4; 9; 16; 25; 36; 49; 64; 81]

let even = fun n -> n mod 2 = 0;;

take (filter even nats) 10;; (* stream of even numbers *)
- : int list = [0; 2; 4; 6; 8; 10; 12; 14; 16; 18]

CMSC 330 22

Streams: Fibonacci
let fib1 : stream =

let rec fibgen (a : int) (b : int) : stream =
Cons(a, lazy (fibgen b (a + b)))

in fibgen 1 1

take fib1 10;;
- : int list = [1; 1; 2; 3; 5; 8; 13; 21; 34; 55]

let rec fib2 : stream =
let add = map2 (+) in

Cons (1, lazy (Cons (1, lazy (add fib2 (tl fib2)))))

take fib2 10;;
- : int list = [1; 1; 2; 3; 5; 8; 13; 21; 34; 55]

CMSC 330 23

Streams: Primes
(* delete multiples of p from a stream *)
let sift (p : int) : stream -> stream =

filter (fun n -> n mod p <> 0)

take (sift 2 nats) 10;;

- : int list = [1; 3; 5; 7; 9; 11; 13; 15; 17; 19]

(* sieve of Eratosthenes *)
let rec sieve (s : stream) : stream =
match s with Nil -> Nil
| Cons (p, g) -> Cons (p, lazy (sieve (sift p (Lazy.force g))))

(* primes *)
let primes = sieve (from 2)

take primes 20;;
- : int list = [2; 3; 5; 7; 11; 13; 17; 19; 23; 29]

