CMSC 330: Organization of Programming
Languages

Lazy Evaluation and
Streams

Call-by-Value

» In call-by-value (cbv), arguments to functions are fully evaluated
before the function is invoked

* Alsoin OCaml, in let x = e1 in e2, the expression e1 is fully evaluated
before e2 is evaluated

» C, C++, and Java also use call-by-value

int r = 0;
int add(int x, int y) { return r + x + y; }

int set_r(void) {
r = 3;
return 1;

}
add(set_r(), 2);

CMSC 330

Call-by-Value in Imperative Languages

» In C, C++, and Java, call-by-value has another feature
* What does this program print?

fa
void f£(int x) { Y
X = 3;

}

int main() {

int x = 0;

£(x);

printf ("$d\n", x);
}

* Cbv protects function arguments against modifications

CMSC 330

Call-by-Name

» Call-by-name (cbn)
* First described in description of Algol (1960)
* Generalization of Lambda expressions

* Idea: In a function: Example:
Letadd x y = x+y add (a*b) (c*d) =
add (a*b) (c*d) (a*b) + (c*d) € executed function

Then each use of x and y in the function definition is just a literal substitution
of the actual arguments, (a*b) and (c*d), respectively

* Implementation: Highly complex, inefficient, and provides little
improvement over other mechanisms

CMSC 330 4

Call-by-Name (cont.)

» In call-by-name (cbn), arguments to functions are evaluated at
the last possible moment, just before they're needed

Haskell; cbn; arguments

/ evaluated here

£
let add x y = ie:Vy

let z = add (add 3 1) (add 4 1)

1

OCaml; cbv; arguments
evaluated here

CMSC 330

Call-by-Name (cont.)

CMSC 330

» What would be an example where this

difference matters?

let cond p x y = if p then x else y

let rec loop n = loop n

let z = cond true 42 (loop 0) o

—
OCaml; cbv; infinite recursion

at call

cond p Xy = if p then x else y

loop n = 1loop n
z = cond True 42 (loop 0)

Haskell; cbn; never evaluated
because parameter is never used

Two Cool Things to Do with CBN

» CBN is also called lazy evaluation
» CBV is also known as eager evaluation

» Build control structures with functions

let cond p x y = if p then x else y

» Build “infinite” data structures

CMSC 330

integers n = n::(integers (n+l))
take 10 (integers @) (* infinite loop in cbv *)

Simulate CBN

Lazy Module: delays computation

module Lazy :

sig
type 'a t = 'a lazy t
val force : 'a t -> 'a
end

A value of type 'a Lazy.t is a value of type 'a whose computation has been
delayed.

CMSC 330

Lazy Module

let add x y = X + y;;

val add : int -> int -> int
let g = lazy (add 10 20);;
val g : int lazy t = <lazy>

Need the value? Force computation

Lazy.force g;;
- : int = 30

CMSC 330

Using Lazy Module

let add xy = X + vy;;
let el = lazy (add 10 20);;
let e2 lazy (add 1 2);;
let foo p el e2 =
Lazy.force (if p then el else e2);;

Type of foo:

bool -> 'a Lazy.t -> 'a Lazy.t -> 'a

foo true el e2;; (*willnotevale2?™)
- ¢ int = 30

CMSC 330

Using Lazy Module

let rec foo n = foo nj;;

foo 1 (* infinite loop)
let el = lazy (foo 1);; (* foo 1 is delayed *)

let e2 = lazy (add 1 2);;

let foo p el e2 =
Lazy.force (if p then el else e2);;

foo false el e2;; (*willnoteval el™)
- ¢ int = 3

CMSC 330

1

Thunk

» Lazy evaluation is implemented using thunks. A thunk is a function of the
form

fun () ->

» Body of a function is not evaluated when the function is defined, but only
when it is applied. Thus function bodies are evaluated lazily.

List.hd [];; (" eagerevaluation *)
Exception: Failure "hd".

let f = fun () -> List.hd [];; (* computation delayed *)
val £ : unit -> 'a = <fun> #

LI O
Exception: Failure "hd".

CMSC 330

12

Streams

A stream is an infinite list. Sometimes these are also called sequences,
delayed lists, or lazy lists.

type stream = Nil | Cons of int * stream lazy t;;

let rec ones = Cons(1l, lazy ones);;
- val ones : stream = Cons (1, <cycle>) (* 1,1,1,1,.. *)

let rec from n = Cons(n, lazy (from (n+l)));;
- val from : int -> stream

let nats = from 0;;
- val nats : stream = Cons (O, <lazy>) (* 0,1,2,3,4,5,.. *)

CMSC 330

13

Quiz 1

Length of nats

CMSC 330

A. O
B. 10
C. infinite
D. 2

14

Quiz 1

Length of nats

CMSC 330

A. 0O
B. 10
C. infinite
D. 2

15

Quiz 2

To evaluate a lazy expression e, we call

Lazy.eval e
Eval e

Force e
Lazy.force e

N W >

CMSC 330

16

Quiz 2

To evaluate a lazy expression e, we call

Lazy.eval e
Eval e

Force e
Lazy.force e

N W >

CMSC 330

17

Streams cont.

type stream = Nil | Cons of int * stream lazy t;;

let hd (s : stream) : int =
match s with
Nil -> failwith "hd"
| Cons (x,) -> x

let t1 (s : stream) : stream =
match s with
Nil -> failwith "t1"
| Cons (_, g) -> Lazy.force g (* getthe tail by evaluating the thunk *)

CMSC 330

18

Streams cont.

#let rec ones = Cons(1, lazy ones);;
-val ones : stream = Cons (1, <cycle>)

(* take first n items from the stream *)
let rec take (s : stream) (n : int) : int list =
if n <= @ then [] else
match s with
Nil -> []
| _-> hd s :: take (t1l s) (n - 1)

#flet t = take nats 10;;
-val t : int list = [0@; 1; 2; 3; 4; 5; 6; 7; 8; 9]

CMSC 330

19

Streams cont.

let rec map (f : int -> int) (s : stream) : stream =
match s with Nil -> Nil
| _ -> Cons (f (hd s), lazy (map f (tl s)))

let rec filter (f : int -> bool) (s : stream) : stream =
match s with Nil -> Nil
| Cons (x, g) ->
if f x then Cons (x, lazy (filter f (Lazy.force g)))
else filter f (Lazy.force g)

CMSC 330

20

Streams: natural numbers

let square n = n * n;;

take (map square nats) 10;
: int list = [0@; 1; 4; 9; 16; 25; 36; 49; 64; 81]

let even = fun n -> n mod 2 = 9;;

take (filter even nats) 10;; (* stream of even numbers *)
- ¢ int list = [0; 2; 4; 6; 8; 10; 12; 14; 16; 18]

CMSC 330

Streams: Fibonacci

let fibl : stream =
let rec fibgen (a

: int) (b : int) : stream =

Cons(a, lazy (fibgen b (a + b)))

in fibgen 1 1

take fibl 10;;
- : int list = [1; 1;

let rec fib2 : stream
let add = map2 (+)

Cons (1, lazy (Cons

take fib2 10;;
- : int list = [1; 1;

CMSC 330

2; 3; 5; 8; 13; 21; 34; 55]

in
(1, lazy (add fib2 (tl fib2)))))

2; 3; 5; 8; 13; 21; 34; 55]

22

Streams: Primes

(* delete multiples of p from a stream *)
let sift (p : int) : stream -> stream =
filter (fun n -> n mod p <> 9)

take (sift 2 nats) 10;;
- : int list = [1; 3; 5;

(* sieve of Eratosthenes *)
let rec sieve (s : stream)
match s with Nil -> Nil
| Cons (p, g) -> Cons (p,

(* primes *)
let primes = sieve (from 2)

take primes 20;;

- : int list = [2; 3; 5;
CMSC 330

7; 9, 11; 13; 15; 17; 19]

: stream =

lazy (sieve (sift p (Lazy.force g))))

7; 11; 13; 17; 19; 23; 29]

23

