We would like to add two large integers:

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{y}_{3} \mathrm{Y}_{2} \mathrm{y}_{1} \mathrm{Y}_{0} \\
+ \\
\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
\hline
\end{array}
$$

We would like to add two large integers:

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{y}_{3} \mathrm{y}_{2} \mathrm{y}_{1} \mathrm{y}_{0} \\
+ \\
\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
\hline
\end{array}
$$

Example

$$
\begin{array}{r}
85436 \\
+79042 \\
\hline 164478
\end{array}
$$

We would like to add two large integers:

$$
\begin{aligned}
& \mathrm{yn}_{\mathrm{n}-1} \mathrm{Y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{Y}_{3} \mathrm{Y}_{2} \mathrm{Y}_{1} \mathrm{Y}_{0} \\
&+ \mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
& \hline
\end{aligned}
$$

Example

$$
\begin{array}{r}
85436 \\
+79042 \\
\hline 164478
\end{array}
$$

How fast is this algorithm?

We would like to add two large integers:

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{y}_{3} \mathrm{y}_{2} \mathrm{y}_{1} \mathrm{y}_{0} \\
+ \\
\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
\hline
\end{array}
$$

Example

$$
\begin{array}{r}
85436 \\
+79042 \\
\hline 164478
\end{array}
$$

How fast is this algorithm?
Linear (in the number of digits).

We would like to add two large integers:

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{y}_{3} \mathrm{y}_{2} \mathrm{y}_{1} \mathrm{y}_{0} \\
+ \\
\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
\hline
\end{array}
$$

Example

$$
\begin{array}{r}
85436 \\
+79042 \\
\hline 164478
\end{array}
$$

How fast is this algorithm?
Linear (in the number of digits).
Can we do better?

We would like to add two large integers:

$$
\begin{array}{r}
\mathrm{y}_{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-2} \mathrm{y}_{\mathrm{n}-3} \cdots \mathrm{y}_{3} \mathrm{y}_{2} \mathrm{y}_{1} \mathrm{Y}_{0} \\
+ \\
\mathrm{x}_{\mathrm{n}-1} \mathrm{x}_{\mathrm{n}-2} \mathrm{x}_{\mathrm{n}-3} \cdots \mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{x}_{0} \\
\hline
\end{array}
$$

Example

$$
\begin{array}{r}
85436 \\
+79042 \\
\hline 164478
\end{array}
$$

How fast is this algorithm?
Linear (in the number of digits).
Can we do better?
No: Any algorithm must examine every digit.

From now on, assume that time to add two n digit numbers is exactly

$$
A(n)=\alpha n(\text { for some constant } \alpha) .
$$

