
CMSC 420:Fall 2019 Dave Mount

Midterm Exam 2

This exam is closed-book and closed-notes. You may use one sheet of notes (front and back).
Write all answers in the exam booklet. You may use any algorithms or results given in class. If
you have a question, either raise your hand or come to the front of class. Total point value is 100
points. Good luck!

Problem 1. (30 points) Short answer questions. Except where noted, explanations are not re-
quired but may be given for partial credit.

(1.1) (8 pts) In an open addressing hashing system using quadratic probing, an insertion
operation is guaranteed to succeed under which of the following conditions (select one):

(a) The table has at least one empty slot

(b) The table has at least one empty slot, and the table size m is a prime number

(c) The table is less than half full (λ < 1
2)

(d) The table is less than half full (λ < 1
2), and the table size m is a prime number

(e) Quadratic probing might fail under any circumstances

(1.2) (12 pts) Recall that a rehashing system is defined by two parameters λmin and λmax,
which limit the table’s load factor. The list on the left below shows three objectives
that a good rehashing system should have, and the list on the right shows choices made
in the design of these parameters. For each objective (a)–(c), indicate which parameter
choice (1)–(6) most directly guarantees that this objective is achieved:

Objectives

(a) High space utilization
(most of the table is used)

(b) Fast search times
(c) Rebuilding is not done too often

Parameter choices

(1) λmin should not be too low
(2) λmin should not be too high
(3) λmax should not be too low
(4) λmax should not be too high
(5) λmax − λmin should not be too low
(6) λmax − λmin should not be too high

(1.3) (5 pts) We have n uniformly distributed points in the unit square, with no duplicate x-
or y-coordinates. Suppose we insert these points into a kd-tree in random order (see the
figure below left). As in class, we assume that the cutting dimension alternates between
x and y. As a function of n what is the expected height of the tree? (No explanation
needed.)

(1.4) (5 pts) Same as the previous problem, but suppose that we insert points in ascending
order of x-coordinates, but the y-coordinates are random (see the above figure right).
What is the expected height of the tree? (No explanation needed.)

Problem 2. (20 points) Consider the B-trees of order 3 shown in the figure below. Let us assume
two conventions: key rotation (when possible) has precedence over splitting/merging. Second,
when splitting a node, if the number of keys shared by the two new nodes is an odd number,
the leftmost node receives the larger number of keys.

1



x

y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x

y

1
2

3

4

5

6

7

8

9

10

11
15

13

14
12

7

16:18 26 29

21:27

14

2:4 9:11

7

29

14

2:4 9:11 25

27

insert(15) delete(25)

(2.1) (10 pts) Show the B-tree that results after inserting the key 15 into the tree on the left.
(Intermediate results are not required, but may be given to help assigning partial credit.)

(2.2) (10 pts) Show the B-tree that results after deleting the key 25 from the tree on the right.

Problem 3. (20 points) In scapegoat trees, we showed that if size(u.child)/size(u) ≤ 2
3 for

every node of a tree, then the tree’s height is at most log3/2 n. In this problem, we will
generalize this condition to:

size(u.child)

size(u)
≤ α, (∗)

for some constant α.

(3.1) (8 pts) Why does it not make sense to set α larger than 1 or smaller than 1
2?

(3.2) (4 pts) If every node of an n-node tree satisfies condition (∗) above, what can be said
about the height of the tree as a function of n and α?

(3.3) (8 pts) Briefly justify your answer to (3.2).

Problem 4. (15 points) We say that an extended binary search tree is geometrically-balanced if
the splitter value stored in each internal node p is midway between the smallest and largest
keys of its external nodes. More formally, if the smallest external node in the subtree rooted
at p has the value xmin and the largest external node has the value xmax, then p’s splitter is
(xmin + xmax)/2 (see the figure below).

Given a sorted array A[0 . . . n − 1] containing n ≥ 1 numeric keys, present pseudo-code for
a function that builds a geometrically-balanced extended binary search tree, whose external
nodes are the elements of A. Convention: If a key is equal to an internal node’s splitter
value, then the key is stored in the left subtree.

2



4

8 25

16

20

1

6 7

15

19 21

31

A = {1, 6, 7, 15, 19, 21, 31}

6.5
xmin xmax

s s =
xmin + xmax

2

p
buildTree(A), where

Briefly explain any assumptions you make about underlying primitive operations (e.g., con-
structors for your internals and external nodes). Any running time is okay.

Problem 5. (15 points) Given a set P of n points in the real plane, a partial-range max query
is given two x-coordinates x1 and x2, and the problem is to find the point p ∈ P that lies
in the vertical strip bounded by x1 and x2 (that is, x1 ≤ p.x ≤ x2) and has the maximum
y-coordinate (see the figure below).

x1 x2

Answer

x

y

Present pseudo-code for an efficient algorithm to solve partial-range max queries, assuming
that the points are stored in a kd-tree. You may make use of any primitive operations on
points and rectangles (but please explain them). You may assume that there are no duplicate
coordinate values, and no coordinates are equal to x1 and x2. If you solve the problem
recursively, indicate what the initial call is from the root level.

3


