
CMSC 420:Fall 2019 Dave Mount

Final Exam

This exam is closed-book and closed-notes. You may use one sheet of notes (front and back).
Write all answers in the exam booklet. You may use any algorithms or results given in class. If
you have a question, either raise your hand or come to the front of class. Total point value is 150
points. Good luck!

Problem 1. (50 points) Short answer questions. Except where noted, explanations are not re-
quired but may be given for partial credit.

(1.1) (5 pts) Given an extended binary tree with n internal nodes, how many external nodes
does this tree have?

(1.2) (5 pts) Let T be extended binary search tree (that is, one having internal and external
nodes). You visit the nodes of T according to one of the standard traversals (preorder,
postorder, or inorder). Which of the following statements is necessarily true? (Select all
that apply.)

(a) In a postorder traversal, all the external nodes appear in the order before any of the
internal nodes

(b) In a preorder traversal, all the internal nodes appear in the order after any of the
external nodes

(c) In an inorder traversal, internal and external node alternate with each other

(d) None of the above is true

(1.3) (5 pts) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(1.4) (5 pts) Repeat (1.3) in the case of deletion. (You can give your answer as an asymptotic
function of n.)

(1.5) (5 pts) You are given a 2-3 tree of height h. As a function of h, what is the minimum
number of red nodes that might appear on any path from a root to a leaf node in
corresponding AA tree? What is the maximum number?

(1.6) (6 pts) Suppose you know that a very small fraction of the keys in a data structure are
to be accessed most of the time, but you do not know which these keys are. Among
the data structures we have seen this semester, which would be best for this situation?
Explain briefly.

(1.7) (8 pts) You insert the sequence of n keys 〈x1, . . . , xn〉 into a treap data structure, but
something goes wrong, and your random number generator sets the priority of xi to i
(not a random value). The tree that is generated by the treap insertion algorithm is
equivalent to which of the following?

(a) An standard (unbalanced) binary search tree

(b) An AVL tree

(c) An AA tree

1



(d) A scapegoat tree

(e) None of these

(1.8) (6 pts) Both the unbalanced binary search tree and the skip list support dictionary
operations in O(log n) expected-case time and O(n) worst-case time. If you were asked
(in a future job, say) to recommend one of these data structures, which of these two
options is preferred, or are they essentially equivalent? Briefly justify your answer. (A
couple of sentences is sufficient.)

(1.9) (5 pts) Between the classical dynamic storage allocation algorithm (with arbitrary-sized
blocks) or the buddy system (with blocks of size power of 2) which is more susceptible
to internal fragmentation? Explain briefly.

Problem 2. (20 points) Consider the 2-3 tree shown in the figure below.

1 95 : 6

3 : 8

12 15

13

11 : 17

19 : 21

22

23

(2.1) (10 points) Show the AA tree corresponding to this tree. (Indicate each red node by
having a dashed line coming in from its parent.)

(2.2) (10 points) Show the 2-3 tree that results by inserting the key 7. (Remember that key
rotations are not performed when inserting into 2-3 trees, only splits. You need only
show the final result for full credit, but intermediate results can be given to help with
partial credit.)

Problem 3. (20 points) Recall the code block below, which was used to find a key in a hash table
table[0...m-1] assuming quadratic probing:

Value find(Key x) {

int c = h(x) // initial probe location

int i = 0 // probe offset

while (table[c].key != empty) && (table[c].key != x) {

c += 2*(++i) - 1 // next position

c = c % m // wrap around

}

return table[c].value // return associated value (or null if empty)

}

The purpose of this problem is to explain how this function works.

(3.1) (5 points) Suppose that h(x) = 0, m > 100, and the while loop above executes at least 5
times. What are the indices of the first five table entries visited by the above algorithm?
(For example 0, 1, . . .).

(3.2) (5 points) What is the purpose of the line c = c % m? (What would go wrong if it were
not there?)

2



(3.3) (10 points) Give a mathematical justification for the assertion that this algorithm visits
the indices h(x) + i2, for i = 0, 1, 2, . . ..

Problem 4. (15 points) You are given a binary search tree where, in addition to the usual fields
p.key, p.left, and p.right, each node p has a parent link, p.parent. This points to p’s
parent, and is null if p is the root. Given such a tree, present pseudo-code for a function

Node preorderPredecessor(Node p),

which is given a non-null reference p to a node of the tree and returns a pointer to p’s preorder
predecessor in the tree (or null if p has no preorder predecessor). Your function should run
in time proportional to the height of the tree. Briefly explain how your function works.

Hint: Test your algorithm in each of the following cases. When p is the root of the tree.
When p is a left child. When p is a right child, and its parent has no left child. When p is a
right child, and its parent has a non-null left child.

Problem 5. (15 points) In this problem we will see how to use kd-trees to answer a common
geometric query, called ray shooting. You are given a collection of vertical line segments in
2D space, each starts at the x-axis and goes up to a point in the positive quadrant. Let
P = {p1, . . . , pn} denote the upper endpoints of these segments (see the figure below, left).
You may assume that both the x- and y-coordinates of all the points of P are strictly positive
real numbers.

x

y

p8

p1

p2

p3
p4

p5

p6

p7

p9

p10

rayShoot(q) = p8

x

y

q

p8

q′ rayShoot(q′) = null

p1

p2

p3
p4

p5

p6

p7

p9

p10

Given a point q, we shoot a horizontal ray emanating from q to the right. This ray travels
until it hits one of these segments (or perhaps misses them all). For example, in the figure
above, the ray shot from q hits the segment with upper endpoint p8. The ray shot from q′

hits nothing.

In this problem we will show how to answer such queries using a standard point kd-tree for
the point set P . A query is given the point q = (qx, qy), and it returns the upper endpoint
pi ∈ P of the segment the ray first hits, or null if the ray misses all the segments.

Suppose you are given a kd-tree of height O(log n) storing the points of P . (It does not store
the segments, just the points.) Present pseudo-code for an efficient algorithm, rayShoot(q),
which returns an answer to the horizontal ray-shooting query (see the figure above, right).

You may assume the kd-tree structure given in class, where each node stores a point p.point,
a cutting dimension p.cutDim, and left and right child pointers p.left and p.right, respec-
tively. You may make use of any primitive operations on points and rectangles (but please

3



explain them). You may assume that there are no duplicate coordinate values among the
points of P or the query point.

Hint: rayShoot(q) will invoke a recursive helper function. Here is a suggested form, which
you are not required to use:

Point rayShoot(Point2D q, KDNode p, Rectangle cell, Point best),

Be sure to indicate how rayShoot(q) makes its initial call to the helper function.

Problem 6. (15 points) The objective of this problem is to design an enhanced stack data struc-
ture, called MinStack. For concreteness, let’s assume that the stack just stores integers. Your
stack should support the standard stack operations void push(int x), which pushes x on
top of the stack, and int pop(), which removes the element at the top of the stack and re-
turns its value. It must also support the additional operation, int getMin(), which returns
the smallest value currently in the stack, without altering the contents of the stack. Finally,
there is a constructor MinStack(int n), which is given the maximum number n of items that
will be stored in the stack.

Present pseudocode for a data structure that implements these operations. All operations
should run in O(1) time. (We will give partial credit if algorithm is correct, but your running
time is worse than this.) Your answer should include the following things:

• Explain what objects are maintained by your data structure.

• Explain how the data structure is initialized (that is, what does the constructor do?)

• Present pseudocode descriptions of push(x), pop(), and getMin().

No error checking is needed. (No more than n elements will be in the stack at any time and
no pop or getMin from an empty stack.)

Problem 7. (20 points) One of the ideas that we saw in the buddy system is that a complete binary
tree can be represented without pointers. The contents of a complete n-node tree are stored
in an array A[1...n], and all tree relationships can be computed simply through arithmetic
or bit-wise operations on the node indices in A. In this problem, we will consider two such
“pointerless” tree representations. In each, we assume that the tree contains n = 2k−1 nodes
for some k ≥ 1, and all leaves are at the same level.

(7.1) (10 points) Consider the Heap-Order tree structure shown in the figure below left (for
n = 15). Given a node at index x, where 1 ≤ x ≤ n, give a short piece of pseudo-code
(or a mathematical expression) to compute each of the following operations. You may
use standard integer arithmetic or bit-wise operations.

For example, for n = 15, left(3)=6, right(3)=7, parent(3)=1, and sibling(3)=2.

• left(int x): The index of x’s left child (assuming x is not a leaf).

• right(int x): The index of x’s right child (assuming x is not a leaf)

• parent(int x): The index of x’s parent (assuming x is not the root)

• sibling(int x): The index of x’s sibling (assuming x is not the root)

4



d

i

b c

fe

a

h j k `

g

a b c d e f g h i j k m

0 1 2 3

1

2 3

4 5 6

8 10 12

7

9 11

4 5 6 7 8 9 10 11 12

m
13

`

13

n
14

o
15

o

14

n

15

Heap order

d

i

b

c

f

ea

h

j

k

`

g

a b c d e f g h i j k m

0 1 2 3

8

4 12

2 6 10

1 5 9

14

3 7

4 5 6 7 8 9 10 11 12

m
11

`

13

n
13

o
15

o

14

n

15

In-order

c

(7.2) (10 points) Consider the In-Order tree structure shown in the figure above right (for n =
15). Repeat problem (7.1) for this ordering. You may use standard integer arithmetic
or bit-wise operations. (Hint: It may be useful to first derive a function level(x) that
returns the level of the of node x in the tree, where the leaves are at level 0.)

For example, for n = 15, left(12)=10, right(12)=14, parent(12)=8, and sibling(12)=4.

• left(int x): The index of x’s left child (assuming x is not a leaf).

• right(int x): The index of x’s right child (assuming x is not a leaf)

• parent(int x): The index of x’s parent (assuming x is not the root)

• sibling(int x): The index of x’s sibling (assuming x is not the root)

5


