
CMSC 420:Fall 2019 Dave Mount

Practice Problems for Midterm 1

Midterm Exam 1 will be in class on Tue, Oct 15. The exam will be closed-book, closed-notes,
but you will be allowed one sheet of notes, front and back (handwritten or typeset, your choice).
Please plan to bring your university ID with you during the exam.

Disclaimer: These practice problems have been extracted from old homework assignments and
exams. Material changes from semester to semester. These do not reflect the actual coverage,
difficulty, or length of the midterm exam.

Problem 1. Short answer questions. Except where noted, explanations are not required, but may
be given for helping with partial credit.

(a) A binary tree is full if every node either has 0 or 2 children. Given a full binary tree
with n total nodes, what is the maximum number of leaf nodes? What is the minimum
number? Give your answer as a function of n (no explanation needed).

(b) What is the minimum and maximum number of levels in a 2-3 tree with n nodes. (Define
the number of levels to be the height of the tree plus one.) Hint: Recall the formula for
the geometric series:

∑m−1
i=0 ci = (cm − 1)/(c− 1).

(c) You have an AVL tree containing n keys, and you insert a new key. As a function
of n, what is the maximum number of rotations that might be needed as part of this
operation? (A double rotation is counted as two rotations.) Explain briefly.

(d) Repeat (c) in the case of deletion. (You can give your answer as an asymptotic function
of n.)

(e) Both skip lists and B-trees made use of nodes containing a variable number of elements.
(In the skip list, and node has a variable number of pointers, and in a B-tree a node
has a variable number of keys/children.) In one case, we allocated nodes of variable size
and in the other case, we allocated nodes of the same fixed size. Why did we do things
differently in these two cases?

(f) Suppose you know that a very small fraction of the keys in a data structure are to be
accessed most of the time, but you do not know which these keys are. Among the data
structures we have seen this semester, which would be best for this situation? Explain
briefly.

(g) Unbalanced search trees and treaps both support dictionary operations in O(log n) “ex-
pected time.” What difference is there (if any) in the meaning of “expected time” in
these two contexts?

(h) Splay trees are known to support efficient finger search queries. What is a “finger search
query”?

(i) Consider a splay tree containing n keys a1 < a2 < · · · < an. Let x, y, and z be any
three consecutive elements in this sorted sequence. Suppose that we perform splay(x)
followed immediately by splay(z). What (if anything) can be said about the depth of
y at this time? (Recall that the depth of a node is the number of edges between it and
the root.)
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Problem 2. Consider an arbitrary multi-way tree T . We showed that it can be represented as
a binary tree T ′ by using the firstChild-nextSibling representation. If we think of the
firstChild link as being the left link and the nextSibling link as being the right link, then
traversals of T correspond to traversals of T ′.

(a) A preorder traversal of T ′ is equivalent to which of the following traversals of T? Pre-
order, postorder, neither.

(b) An inorder traversal of T ′ is equivalent to which of the following traversals of T? Pre-
order, postorder, neither.

(c) A postorder traversal of T ′ is equivalent to which of the following traversals of T? Pre-
order, postorder, neither.

Problem 3. You a given a threaded binary search tree T (not necessarily balanced). Recall that
each node has additional fields p.leftIsThread (resp., p.rightIsThread). These indicate
whether p.left (resp., p.right) points to an actual child or it points to the inorder prede-
cessor (resp., successor).

Present pseudocode for each of the following operations. Both operations should run in time
proportional to the height of the tree.

(a) void T.insert(Key x, Value v): Insert a new key-value pair (x, v) into T and update
the node threads appropriately (see Fig. 1(a)).

(b) BinaryNode preorderSuccessor(BinaryNode p): Given a non-null pointer to any node
p in T , return a pointer to its preorder successor. (Return null if there is no preorder
successor.)
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Figure 1: Problems 3, 4 and 5.

Problem 4. You are given a binary search tree T with n nodes in which each node p contains an
additional field, p.size, containing the number of nodes in the subtree rooted at p (shown
in blue in Fig. 1(a)). For each of the following queries, present pseudocode for function that
answers the query in time proportional to the height of the tree.
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(a) Key T.findKth(int k): Given an integer k, where 1 ≤ k ≤ n, returns the k-th smallest
key in the search tree. (For example, for the tree in Fig. 1(b), T.findKth(10) = 18.)

(b) int T.range(Key x1, Key x2): Given two key values x1 ≤ x2, returns a count the
number of nodes in the tree whose key value x satisfies x1 ≤ x ≤ x2. (For example, in
Fig. 1(b), T.range(6,30) = 12, as it includes {6, 8, 9, 12, 14, 15, 18, 21, 23, 25, 29, 30}.)

Problem 5. Consider the splay tree shown in Fig. 1(c). Show the result of performing the oper-
ation splay(8) on this tree. (You need only show the final result. Intermediate results can
be shown to help with partial credit.)

Problem 6. Consider the AVL tree shown in Fig. 2(a). (The balance factors are shown in blue.)
Show the result of performing the operation delete(25) on this tree. (You need only show
the final tree, but intermediate trees can be given for assigning partial credit.)
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Figure 2: Problems 6 and 7.

Problem 7. Consider the treap tree shown in Fig. 2(b). (Keys are letters and priorities are
numbers.) Show the result of performing the operation delete("k") on this treap. (You
need only show the final tree, but intermediate trees can be given for assigning partial credit.)

Problem 8. You are given a skip list with n nodes in which, rather than promoting each node
to the next higher level with probability 1/2, we promote each node with probability p, for
0 < p < 1.

(a) Given a skip list with n keys, what is the expected number of keys that contribute to
the ith level. (Recall that the lowest level is level 0.) Briefly explain.

(b) Show that (excluding the header and sentinel nodes) the total number of links in such
a skip list (that is, the total size of all the skip list nodes) is expected to be at most
n/(1 − p). (Hint: It may be useful to recall the formula for the geometric series from
Problem 1(b).)

Problem 9. Show that if all nodes in a splay tree are accessed (splayed) in sequential order, the
resulting tree consists of a linear chain of left children.
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Problem 10. You are given a degenerate binary search tree with n nodes in a left chain as shown
in Fig. 3, where n = 2k − 1 for some k ≥ 1.

(a) Derive an algorithm that, using only single left- and right-rotations, converts this tree
into a perfectly balanced complete binary tree (see Fig. 3). (Hint: Start by getting the
root node into proper position, and then work recursively from there.)
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Figure 3: Problem 10.

(b) As an asymptotic function of n, how many rotations are needed to achieve this? O(log n)?
O(n)? O(n log n)? O(n2)? Briefly justify your answer.
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