
CMSC 420:Fall 2019 Dave Mount

The SG kd-Tree Data Structure

Motivation: For this part of the programming assignment, we will implement a novel data struc-
ture for dynamically maintaining a kd-tree. Geometric structures like kd-trees are not as easy
to rebalance as are binary search trees because the the ubiquitous rotation operation cannot
be applied to multidimensional partition trees, like the kd-tree. The alternative is to rebuild
subtrees.

In geometric data structures, it is natural to employ an extended tree structure, where points
are stored in the external nodes, and internal nodes store splitters, which partition space.

Thus, in order to design a dynamic data structure for geometric point sets, we will combine
subtree rebuilding with an extended tree structure. This is exactly what the SG kd-tree is.

Overview: The SG kd-tree has features in common to both the extended version of the scapegoat
tree (our SG tree) and kd-trees, Here are the elements that it shares in common with the SG
tree:

• It is an extended tree, in which contents are stored only in the external nodes and splitters
stored in internal nodes.

• It is rebalanced through the process of rebuilding subtrees. The same rules as the SG
tree apply for when to trigger rebuilding, determining scapegoat nodes, and deciding
how to partition objects among the left and right subtrees.

• If a point is equal to the splitter, it is stored in the left subtree. (Note that this differs
from the kd-tree convention from class.)

The principal difference is how splitting is done. Our approach will be different than a classical
kd-tree. We will not use a simple horizontal or vertical line to split the points, and we will
not alternate the splitting dimension between levels of the tree.

Suppose that we wish to build a balanced kd-tree from a list of k points. As with the SG
tree, we will employ a recursive approach. If k = 1, then we simply generate a single external
node containing this point and return a reference to it. Otherwise, we will partition the array
based into two roughly equal halves based on the splitting dimension. We will build subtrees
for each side of the partition, and then join them under a common internal node. But how is
the splitting dimension chosen and how are points partitioned?

How to Choose the Splitting Dimension? This is based on the distribution of the point set.
Consider a minimum enclosing axis-parallel rectangle r for the point set. (This is not to be
confused with a cell associated with a node of the kd-tree nor the bounding box of the entire
kd-tree).

Let r.low and r.high denote its lower left and upper right corner points, respectively (see
Fig. 1). The splitting dimension is parallel to the longer side of r. More formally, define
∆x = r.high.x − r.lo.x and ∆y = r.high.y − r.lo.y. If ∆x ≥ ∆y, we split along the
x-coordinate (vertically), and otherwise we split along the y-coordinate (horizontally).
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Figure 1: The splitting dimension is based on the shape of the minimum enclosing rectangle.

After the points are partitioned, this process is repeated recursively. Thus, the splitting
dimension need not alternate between levels of the tree. It depends on the distribution of the
points within each subtree as to how they will be split.

How to Partition the Points? In the SG tree, because there are no duplicate keys, we had
perfect control of how keys were distributed into the left and right subtrees. This is a problem
for kd-trees, however, since multiple points may share the same x- or y-coordinate as the
splitting line. Recall that in the classical kd-tree (as given in class), all of the points lying on
the splitting line are placed in the right subtree.

Unfortunately, we need finer control on the splitting process for our SG kd-trees. Our ap-
proach is based on two ideas:

• The splitter will be point, not a line.

• Points are ordered lexicographically with respect to this point. If the splitting dimension
is x, the points are order lexicographically in the order (x, y). If the splitting dimension
is y, the points are ordered lexicographically by (y, x). (For example, in Fig. 2(a) the
splitting dimension is x. The points c, d, e, and f all share the same x-coordinate. But
by making d the splitter, we can distinguish c and d as lying in the left subtree and e

and f as lying in the right subtree.)
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Figure 2: The splitter is a point (d in each case) and points are partitioned lexicographically
depending on the splitting dimension. As with the SG tree, points that are less than or equal to
the splitter are placed in the left subtree.
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In summary, in addition to size and height information, each internal node of the SG kd-tree
stores two pieces of information:

• A splitting dimension, which is either 0 for x or 1 for y.

• A splitter point s = (sx, sy) in 2-dimensional space. If the splitting dimension is x, a point
p = (px, py) is placed in the left subtree if and only if (px, py) ≤ (sx, sy) lexicographically.
If the splitting dimension is y, it is placed in the left subtree if and only if (py, px) ≤
(sy, sx) lexicographically.

Building a Balanced SG kd-Tree: We can now describe the algorithm for building a balanced
tree formally. We’ll express this in terms of Java’s lists and sublists. Given a list (e.g., an
ArrayList) A containing k points, if k = 1, we create a single external node containing this
point.

Otherwise, we compute the minimum enclosing rectangle r for the points (by computing the
minimum and maximum coordinates in each dimension) and select the splitting dimension to
be parallel to the longer of the two sides (with ties broken in favor of x or vertical).

Next, we sort the list appropriate to the splitting dimension. In Java, this can be done by
defining two Comparator objects: CompareXY sorts lexicographically on (x, y) and CompareYX

sorts lexicographically on (y, x). Then you can invoke the Collections.sort(A, compareXY)

or Collections.sort(A, compareYX) depending on the splitting dimension. (There are
slightly more efficient ways to extract the sorted order from the existing kd-tree tree, but we
will leave this as an exercise.)

After the list is sorted, let m = dk/2e. Save the splitter as A.get(m-1). Then apply the algo-
rithm recursively to the sublists, A.subList(0, m) (that is, A[0...m− 1]) and A.subList(m,

k) (that is, A[m...k − 1]) to obtain the left and right subtrees. Finally, combine these two
subtrees under a common internal node that contains the splitting dimension and splitter.

(Hint: Above, I suggested that you save the splitter before you invoke the function recursively
on the children. Can you see why?)

Dictionary Operations: Now that you know how to rebuild an SG kd-tree, you know almost
everything that you need in order to rebuild and rebalance the tree. However, we still need
to know how to insert, delete, and find individual points.

If you designed your SG tree code well, the answer is remarkably simple and elegant. In the
SG tree, whenever we visited an internal node, we compared the point lexicographically to
determine whether to continue in the left subtree or right subtree. The only difference now is
to invoke the appropriate comparator (CompareXY or CompareYX) depending on the splitting
dimension for this node. Otherwise, the code remains essentially unchanged.

For completeness, let us review each of the operations individually.

Find: To find a point p = (px, py) in the SG kd-tree, we descend the tree as in any standard
binary tree search. The difference is that when we arrive at an internal node that has an
x-splitter s, we use the CompareXY comparator to determine whether (px, py) ≤ (sx, sy),
and descend to the appropriate child. If this is a y-splitter, we use the CompareYX

comparator to determine whether (py, px) ≤ (sy, sx). When we arrive at an external
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node, we check whether we are equal to this point. If so, we have found it, and otherwise
we have not.

Insert: To insert a new point p into the tree, we employ the above searching process until
arriving at an external node. Let p′ be the point in this node. (Let’s assume that we
have already checked for duplicates.) Recall that the insertion process involves creating
a new external node for p, and then linking these two external nodes under a common
internal node.

At first, the process seems to be quite complicated compared to the 1-dimensional case.
(We now need to consider whether this internal node should be an x- or y-splitter, and
this depends on the shape of the minimum bounding rectangle containing p and p′.) The
good news, is that there is a very elegant solution. We simply create a 2-element list
containing p and p′ and then invoke the aforementioned function for building a balanced
tree from this 2-element list. This will return the desired 3-node structure, which we
can just link into the tree by returning a reference to the root (internal node).

Delete: The deletion code for kd-trees was amazingly complicated, but that was because of
the need to find replacement nodes. The good news here is that all deletions occur at
external nodes. No replacement points need be computed!

To delete a city of a given name, we first search the binary search tree to find its
coordinates. We then invoke the above find function to find the external node containing
the point. As in the SG tree, we simply unlink this node and its parent from the tree.

You might notice that the insert and delete functions will generally modify the structure of
the minimum enclosing rectangle for the points of a subtree. However (as with the SG tree)
we do not modify the contents of the internal nodes unless a rebuilding operation has been
triggered.

Nearest Neighbor Searching: The nearest-neighbor searching algorithm as presented in class
can be adapted very easily to this setting. In fact, the code is actually a bit shorter here. In
the classical kd-tree, each node contains a point. Splitters, however, should not be considered
as elements of the tree. (The reason is that when we delete points, we do not alter the
splitters.)

What this means is that the two lines of the function nearNeighbor function of Lecture 14
that compute the distance of the query point q to p.point can be omitted for internal nodes.
(These lines are invoked for external nodes, however.)

The other difference is structural. The static function given in the lecture notes now needs to
become a member function of internal and external node classes. For example, rather than
making the recursive call as nearNeighbor(q, p.left, leftCell, best) as we did in Lec-
ture 14, we would now instead call left.nearNeighbor(q, leftCell, best). Otherwise,
the code is pretty much the same as in the lecture notes.

Example 1: Let us begin with a simple example from test file mytest-input-1.xml.

<createCity "Edinburgh" x="500" y="500" .../>

<createCity "Lisbon" x="750" y="600" .../>

<createCity "Varna" x="400" y="800" .../>

<createCity "London" x="300" y="400" .../>
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When Edinburgh is inserted, the tree consists of a single external node. When Lisbon is
added, we determine that the bounding rectangle for these two cities is wider and tall, so we
declare the node to be an x-splitter. The splitter is the smaller point (Edinburgh), which
goes into the left subtree, and Lisbon goes into the right subtree. (See Fig. 3 left.)
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Figure 3: The SG kd-tree resulting from inserting four cities, and the associated tree structures.
Note that a point that coincides with a splitter is placed in left subtree. The last figure shows the
result of a nearest-neighbor query.

Next, Varna is inserted. The search ends at the external node with Edinburgh. The bounding
rectangle for these two points is taller than wide, so the new node is a y-splitter. The splitter
is the smaller point (again Edinburgh), which goes into the left subtree, and Varna goes into
the right subtree. (See Fig. 3 middle.)

Finally, London is inserted. The search terminates at the external node containing Edinburgh.
The bounding rectangle for these two points is wider and tall, so the new node is an x-splitter.
The splitter is the smaller point (London), which goes into the left subtree, and Edinburgh

goes into the right subtree. (See Fig. 3 right.)

You will notice in the above figure that we distinguish the splitters, which store only the (x, y)
coordinates, from external nodes, which store all the city information. In our implementation,
we distinguished City objects from Point2D objects for this reason. This is not a requirement
of the programming assignment, but as a general principle, it is better to use the smallest
representation needed to do the job.

Example 2: Next, let us consider a more involved example. (The successive tree structures are
shown in the file test/mytest-output-2-full-debug.txt in the Part-2 skeleton code.)

We begin by inserting the four cities from the above example, and then one more city, Prague
(see Fig 4 middle). This last city results in a tree of size 5 and height 4. Since 4 > log3/2 5 ≈
3.97, a rebuild event is triggered. In this case, the root node is the scapegoat. We apply the
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above rebuilding algorithm. The bounding rectangle for the points is taller than wide, so the
roots splitting dimension is y. We partition the 5 points. Recalling our SG tree convention,
the left subtree gets the extra point, and so Edinburgh is the root’s splitter. The rebuilt tree
is shown on the right side of Fig 4.
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Figure 4: The SG kd-tree after inserting 5 cities both before and after rebuilding the root.

Next, we insert four more cities (see Fig 5 middle). These result in a tree of size 9 and height
6. Since 6 > log3/2 9 ≈ 5.42, another rebuilding event is signaled. Again, the root is the
scapegoat, and we again apply the rebuilding algorithm. The rebuilt tree is shown on the
right side of Fig 5.
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<createCity "Madrid" x="900" y="450" ...

<createCity "Paris" x="700" y="300" ...

<createCity "Copenhagen" x="800" y="100" ...

<createCity "Nice" x="850" y="250" ...
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Figure 5: The SG kd-tree after inserting 4 more cities both before and after rebuilding the root.

Next, we insert an additional 7 more cities. In this case, all the cities can be inserted without
triggering a rebuild event. The resulting tree is shown in Fig 6.
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<createCity "Vienna" x="200" y="600" ...

<createCity "Amsterdam" x="550" y="150" ...

<createCity "Munich" x="100" y="900"...

<createCity "Milan" x="950" y="850"...

<createCity "Rome" x="800" y="750" ...

<createCity "Naples" x="600" y="950" ...

<createCity "Geneva" x="650" y="700" ...

Before rebuild

Figure 6: The SG kd-tree after inserting 7 more cities. (No rebuild needed.)

At this point, the tree contains 5 + 4 + 7 = 16 cities. We delete 9 of the cities. By the rules of
SG trees, the current size of the tree is n = 7 and the upper bound on the tree size is m = 16.
Since 2n < m, we rebuild the entire tree. The result is shown in Fig 7 on the right.
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<deleteCity "London"/>

<deleteCity "Nice"/>

<deleteCity "Amsterdam"/>

<deleteCity "Rome"/>

<deleteCity "Munich"/>

<deleteCity "Edinburgh"/>

<deleteCity "Paris"/>

<deleteCity "Lisbon"/>

<deleteCity "Milan"/>
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Figure 7: The SG kd-tree after deleting 9 cities both before and after rebuilding the root.
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