Geometric Data Structures: In today’s lecture we move in a new direction by covering a number of data structures designed for storing multi-dimensional geometric data. Geometric data structures are fundamental to the efficient processing of data sets arising from myriad applications, including spatial databases, automated cartography (maps) and navigation, computer graphics, robotics and motion planning, solid modeling and industrial engineering, particle and fluid dynamics, molecular dynamics and drug design in computational biology, machine learning, image processing and pattern recognition, computer vision.

Fundamentally, our objective is to store a large datasets consisting of geometric objects (e.g., points, lines and line segments, simple shapes (such as balls, rectangles, triangles), and complex shapes such as surface meshes) in order to answer queries on these data sets efficiently. While some of our explorations will involve delving into geometry and linear algebra, fortunately most of what we will cover assumes no deep knowledge of geometric objects or their representations. Given a collection of geometric objects, there are numerous types of queries that we may wish to answer.

Nearest-Neighbor Searching: Store a set of points so that given a query point q, it is possible to find the closest point of the set (or generally the closest k objects) to the query point (see Fig. 1(a)).

Range Searching: Store a set of points so that given a query region R (e.g., a rectangle or circle), it is possible to report (or count) all the points of the set that lie inside this region (see Fig. 1(b)).

Point location: Store the subdivision of space into disjoint regions (e.g., the subdivision of the globe into countries) so that given a query point q, it is possible determine the region of the subdivision containing this point efficiently (see Fig. 1(c)).

Intersection Searching: Store a collection of geometric objects (e.g., rectangles), so that given a query consisting of an object R of this same type, it is possible to report (or count) all of the objects of the set that intersect the query object (see Fig. 1(d)).

Ray Shooting: Store a collection of object so that given any query ray, it is possible to determine whether the ray hits any object of the set, and if so which object does it hit first.

![Fig. 1: Common geometric queries: (a) nearest-neighbor searching, (b) range searching, (c) point location, (d) intersection searching.](image_url)
In all cases, you should imagine the size n of the set is huge, consisting for example of millions of objects, and the objective is to answer the query in time that is significantly smaller than n, ideally $O(\log n)$. We shall see that it is not always possible to achieve efficient query times with storage that grows linearly with n. In such instances, we would like the storage to slowly, for example, $O(n \log n)$. As with 1-dimensional data structures, it will also be desirable to provide dynamic updates, allowing for the insertion and deletion of objects.

No Total Ordering: While we shall see that many of the ideas that we applied in the design of 1-dimensional data structures can be adapted to the design of multi-dimensional data structure, there is one fundamental challenge that we will face. Almost all 1-dimensional data structures exploit the fact that the data are drawn from a total order. The existence of such a total ordering is critical to all the tree-based search structures we studied as well as skip lists. The only exception to this is hashing. But hashing is applicable only when we are searching for exact matches. In typical geometric queries (as all the ones described above) exact matching does not apply. Instead we are interested in notions such as “close to” or “contained within” or “overlapping with,” none of which are amenable to hashing.

Point representations: Let’s first say a bit about representation and notation. We will assume that each point p_i is expressed as a d-element vector, that is $p_i = (p_{i,1}, \ldots, p_{i,d})$. To simplify our presentation, we will usually describe our data structures in a 2-dimensional context, but the generalization to higher dimensions will be straightforward. For this reason, we may sometimes refer to a point’s in terms of its (x, y)-coordinates, for example, $p = (p_x, p_y)$, rather than $p = (p_1, p_2)$.

While mathematicians label indices starting with 1, programming languages like Java prefer to index starting with 0. Therefore, in Java, each point p is represented as a d-element vector:

```java
float[][] p = new float[n][d]; // array of n points, each a d-element vector
```

In this example, the points are $p[0], p[1], p[n-1]$, and the coordinates of the ith point are given by $p[i][0], p[i][1], p[i][d-1]$.

A better approach would be to define a class that represents a point object. An example of a simple `Point` object can be found in the code block below. We will assume this in our examples. Java defines a 2-dimensional point object, called `Point2d`.

```java
public class Point2d {
    private float[] coord; // coordinate storage

    public Point2d(int dim) { /* construct a zero point */ }

    public int getDim() { return coord.length; }
    public float get(int i) { return coord[i]; }
    public void set(int i, float x) { coord[i] = x; }
    public boolean equals(Point other) { /* compare with another point */ }
    public float distanceTo(Point other) { /* compute distance to another point */ }
    public String toString() { /* convert to string */ }
}
```

Lecture 13 2 Fall 2019
Now, your point set could be defined as an array of points, for example, `Point[] pointSet = new Point[n]`. Note that although we should use `x.get(i)` to get the ith coordinate of a point x, we will often be lazy in our code samples, and just write $x[i]$ instead.

Point quadtree: Let us first consider a natural way of generalizing unbalanced binary trees in the 1-dimensional case to a d-dimensional context. Suppose that we wish to store a set $P = \{p_1, \ldots, p_n\}$ of n points in d-dimensional space. In binary trees, each point naturally splits the real line in two. In two dimensions if we run a vertical and horizontal line through the point, it naturally subdivides the plane into four quadrants about this point. (In general d-dimensional space, we consider d axis-parallel hyperplanes passing through the point. These subdivide space into 2^d orthants.)

To simplify the presentation, let us assume that we are working in 2-dimensional space. The resulting data structure is called a point quadtree. (In dimension three, the corresponding structure is naturally called an octtree. As the dimension grows, it is too complicated to figure out the proper term for the number of children, and so the term quadtree is often used in arbitrary dimensions, even though the outdegree of each node is 2^d, not four.)

Each node has four (possibly null) children, corresponding to the four quadrants defined by the 4-way subdivision. We label these according to the compass directions, as NW, NE, SW, and SE. In terms of implementation, you can think of assigning these the values 0, 1, 2, 3, and use them as indices to a 4-element array of children pointers.

As with standard (unbalanced) binary trees, points are inserted one by one. We descend through the tree structure in a natural way. For example, we compare the newly inserted point’s x and y coordinates to those of the root. If the x is larger and the y is smaller, we recurse on the SE child. The insertion of each point results in a subdivision of a rectangular region into four smaller rectangles. Consider the insertion of the following points:

$$(35, 40), (50, 10), (60, 75), (80, 65), (85, 15), (5, 45), (25, 35), (90, 5).$$

The resulting subdivision is shown in Fig. 2(a) and the tree structure is shown in (b).

![Point quadtree](image)

Fig. 2: Point quadtree.

Each node in the tree is naturally associated with a rectangular region of space, which we call its cell. Note that some rectangles are special in that they extend to infinity. Since semi-infinite rectangles sometimes bother people, it is not uncommon to assume that everything
is contained within one large bounding rectangle, which may be provided by the user when
the tree is first constructed.

We will not discuss algorithms for the point quad-tree in detail. Instead, we will defer this
discussion to point kd-trees, and simply note that for each operation on a kd-tree, there is a
similar algorithm for quadtrees.

Point kd-tree: As observed above, point quadtrees can be generalized to higher dimensions, the
number of children grows exponentially in the dimension, as 2^d. For example, if you are
working in 20-dimensional space, every node has 2^{20}, or roughly a million children. Clearly,
the simple quadtree idea is not scalable to very high dimensions. Next, we describe an
alternative data structure, that always results in a binary tree.

As in the case of a quadtree, the cell associated with each node is an axis-aligned rectangle
(assuming the planar case) or a hyper-rectangle in d-dimensional space. When a new point is
inserted into some node (equivalently into some cell), we will split the cell by a horizontal or
vertical splitting line, which passes through this point. In higher dimensions, we split the cell
by a $(d-1)$ dimensional hyperplane that is orthogonal to one of the coordinate axes. In any
dimension, such a split can be specified by giving the cutting axes (which can be represented
as an integer from 0 to $d-1$), and also called the cutting value. Following the approach used
in point quadtrees, the cutting value will be taken from the coordinates of the point being
stored in this node. Thus, along with its left and right child pointers, we can think of every
node as storing two items, an integer cutting dimension and a point. The following code
shows a possible node structure. We add a utility method to determine whether a point lies
in the left subtree, that is, whether it is smaller along the cutting dimension. Of course, if
it is in the right subtree, this returns false. Throughout, we will use the terms “left” and
“right” to by synonymous with being smaller than or larger than the splitter along the cutting
dimension, respectively.

```java
class KDNode { // node in a kd-tree
    Point point;  // splitting point
    int cutDim;   // cutting dimension
    KDNode left;  // children
    KDNode right;

    KDNode(Point point, int cutDim) { // constructor
        this.point = point;
        this.cutDim = cutDim;
        left = right = null;
    }

    boolean inLeftSubtree(Point x) { // is x in left subtree?
        return x[cutDim] < point[cutDim];
    }
}

The resulting data structure is called a point kd-tree. Actually, this is a bit of a misnomer.
The data structure was named by its inventor Jon Bentley to be a 2-d tree in the plane, a
3-d tree in 3-space, and a k-d tree in dimension $k$. However, over time the name “kd-tree”
became commonly used irrespective of dimension. Thus it is common to say a “kd-tree in
dimension 3” rather than a “3-d tree”.

Lecture 13 4 Fall 2019
How is the cutting dimension chosen? There are a number of ways, but the most common is just to alternate among the possible axes at each new level of the tree. For example, at the root node we cut orthogonal to the $x$-axis (or 0th coordinate), for its children we cut orthogonal to $y$ (or 1st coordinate), for the grandchildren we cut again along $x$. In general, we cycle through the various axes, setting the cutting dimension of the child to 1 plus the cutting dimension of the parent all taken modulo the dimension. An example is shown in Fig. 3 (given the same points as in the previous example). Again we show both the tree and the spatial subdivision. We will assume this method of choosing the cutting dimension in our examples, but there are better ways, for example selecting the cutting dimension based on the direction in which the points of the subtree are most widely distributed.

![Fig. 3: Point kd-tree decomposition.](image)

The tree representation is much the same as it is for quad-trees except now every node has only two children. The contents of the left child of a node contain the points $x$ such that $x[\text{cutDim}] < \text{point}[\text{cutDim}]$ and for the right child $x[\text{cutDim}] \geq \text{point}[\text{cutDim}]$. (How you break ties is rather arbitrary.)

As with unbalanced binary search trees, it is possible to prove that if keys are inserted in random order, then the expected height of the tree is $O(\log n)$, where $n$ is the number of points in the tree.

**Insertion into kd-trees:** Insertion operates as it would for a regular binary search tree. We descend the tree until falling out, and then we create a node containing the point and assign its cutting dimension by whatever policy is used by the tree. The principal utility function is presented in the following code block. The function takes three arguments, the point $x$ being inserted, the current node $p$, and the cutting dimension of the newly created node. The initial call is $\text{root} = \text{insert}(x, \text{root}, 0)$.

An example is shown in Fig. 4, where we insert the point $(50, 90)$ into the kd-tree of Fig. 3. We descend the tree until we fall out on the left subtree of node $(60, 75)$. We create a new node at this point, and the cutting dimension cycles from the parent’s $x$-cutting dimension ($\text{cutDim} = 0$) to a $y$-cutting dimension ($\text{cutDim} = 1$).

**Deletion and Replacement Points:** We will next discuss deletion from kd-trees. As we saw with deletion in standard binary search trees, an issue that will arise when deleting a point
Fig. 4: Insertion into the point kd-tree of Fig. 3.

from the middle of the tree is what to use in place of this node, that is, the replacement point. It is not as simple as selecting the next point in an inorder traversal of the tree, since we need a point that satisfies the necessary geometric conditions.

Suppose that we wish to delete a point in some node p, and suppose further that p.cutDim == 0, that is, the x-coordinate. An appropriate choice for the replacement point is the point of p.right that has the smallest x-coordinate. (What do we do if the right child is null? We’ll come to this later.) Finding such a point is a nice exercise, since it illustrates how programming is done with kd-trees.

Let us derive a procedure findMin(p, i, cutDim) that computes the point in the subtree rooted at p that has the smallest i-th coordinate. The procedure operates recursively. When we arrive at a node p, if the cutting dimension matches i, then we know that the subtrees are ordered according the the i-th coordinate. If the left subtree is nonempty, then the desired point is the minimum from this subtree. Otherwise, we return p’s associated point. (There is never a need to search the right subtree. Do you see why?)

On the other hand, if p’s cutting dimension differs from i then we cannot infer which subtree may contain the point with the minimum i-th coordinate. So, we will have to try the right subtree, the left subtree, and the point at this node. We include a function minAlongDim(p1, p2, i), which returns whichever point p1 or p2 is smallest along coordinate i. (The function is written so that the second point might be null, which happens when we attempt to extract the minimum point from an empty subtree.) The function is given in the code block below.

Fig. 5 presents an example of the execution of this algorithm to find the point with the
Find the minimum point in subtree along $i$th coordinate

```java
Point findMin(KDNode p, int i) { // get min point along dim i
 if (p == null) { // fell out of tree?
 return null;
 }
 if (p.cutDim == i) { // cutting dimension matches i?
 if (p.left == null) { // no left child?
 return p.point; // use this point
 } else
 return findMin(p.left, i); // get min from left subtree
 } else { // it may be in either side
 Point q = minAlongDim(p.point, findMin(p.left, i), i);
 return minAlongDim(q, findMin(p.right, i), i);
 }
}
```

```java
Point minAlongDim(Point p1, Point p2, int i) { // return smaller point on dim i
 if (p2 == null || p1[i] <= p2[i]) // p1[i] is short for p1.get(i)
 return p1;
 else
 return p2;
}
```

minimum $x$-coordinate in the subtree rooted at $(55, 40)$. Since this node splits horizontally, we need to visit both of its subtrees to find their minimum $x$ values. (These will be $(15, 10)$ for the left subtree and $(10, 65)$ for the right subtree.) These values are then compared with the point at the root to obtain the overall $x$-minimum point, namely $(10, 65)$. Observe that because the subtrees at $(45, 20)$ and $(35, 75)$ both split on the $x$-coordinate, and we are looking for the point with the minimum $x$-coordinate, we do not need to search their right subtrees. The nodes visited in the search are shaded in blue.

**Deletion from a kd-tree:** As with insertion we can model the deletion code after the deletion code for unbalanced binary search trees. However, there is an interesting twist here. Recall that in the 1-dimensional case we needed to consider a number of different cases. If the node is a leaf we just delete the node. Otherwise, its deletion would result in a “hole” in the tree.
We need to find an appropriate replacement element. In the 1-dimensional case, we were able to simplify this if the node has a single child (by making this child the new child of our parent). However, this would move the child from an even level to an odd level, or vice versa, and this would violate our assumption that the cutting dimensions cycle among the coordinates. (Note this might not be an issue for some implementations of the kd-tree, where the cutting dimension is selected by some other policy, but to keep things as clean as possible, our deletion procedure will not alter a node’s cutting dimension.)

Let us assume first that the right subtree is non-empty. Recall that in the 1-dimensional case, the replacement key was taken to be the smallest key from the right child, and after using the replacement to fill the hole, we recursively deleted the replacement. How do we generalize this to the multi-dimensional case? What does it mean to find the “smallest” element in a such a set? The proper thing to do is to find the point whose coordinate along the current cutting dimension is minimum. Thus, if the cutting dimension is the $x$-axis, say, then the replacement key is the point with the smallest $x$-coordinate in the right subtree. We use the $\text{findMin}()$ function (given above) to do this.

On the other hand, what if the right subtree is empty? At first, it might seem that the right thing to do is to select the maximum node from the left subtree. However, there is a subtle trap here. Recall that we maintain the invariant that points whose coordinates are equal to the cutting dimension are stored in the right subtree. If we select the replacement point to be the point with the maximum coordinate from the left subtree, and if there are other points with the same coordinate value in this subtree, then we will have violated our invariant. There is a clever trick for getting around this though. For the replacement element we will select the minimum (not maximum) point from the left subtree, and we move the left subtree over and becomes the new right subtree. The left child pointer is set to null. The code is given in the following code block.

```java
kd-tree Deletion

KDNode delete(Point x, KDNode p) {
 if (p == null) { // fell out of tree?
 throw Exception("point does not exist");
 } else if (p.point.equals(x)) { // found it
 if (p.right != null) { // take replacement from right
 p.point = findMin(p.right, p.cutDim);
 p.right = delete(p.point, p.right);
 } else if (p.left != null) { // take replacement from left
 p.point = findMin(p.left, p.cutDim);
 p.right = delete(p.point, p.left); // move left subtree to right!
 p.left = null; // left subtree is now empty
 } else { // deleted point in leaf
 p = null; // remove this leaf
 }
 } else if (p.inLeftSubtree(x)) { // delete from left subtree
 p.left = delete(x, p.left);
 } else { // delete from right subtree
 p.right = delete(x, p.right);
 }
 return p;
}
```

An example of the operation of this deletion algorithm is presented in Fig. 6. The original
Fig. 6: Deletion from a kd-tree.

objective is to delete the point (35, 60). This is at the root of the tree. Because the cutting
dimension is vertical, we search its right subtree to find the point with the minimum x-
coordinate, which is (50, 30). The point is copied to the root, and we then recursively delete
(50, 30) from the root’s right subtree. This recursive call then seeks the node \( p \) containing
(50, 30). Note that this node has no right child, but unlike standard binary search trees, we
cannot simply unlink it from the tree (for the reasons described above). Instead, we observe
that its cutting dimension is horizontal, and we search for the point with the minimum y-
coordinate in \( p \)’s left subtree, which is (60, 10). We copy (60, 10) to \( p \), and then recursively
delete (60, 10) from \( p \)’s left subtree. It is a leaf, so it may simply be unlinked from the tree.
Finally we move this left subtree \( p \) over to become \( p \)’s right subtree. (Whew!)

Recall that in the 1-dimensional case, in the 2-child case the replacement node was guaranteed
to have either zero or one child. However this is not necessarily the case here. Thus we may
do many 2-child deletions. As with insertion the running time is proportional to the height
of the tree.

Analysis: The space needed by the kd-tree to store \( n \) points in \( d \)-dimensional space is \( O(n) \), which
is optimal. (We treat \( d \) like a constant, independent of \( n \). In fact, it takes \( O(dn) \) space to
store the coordinates, but since \( d \) is a constant, we can ignore the \( d \) factor.)

The height analysis of the kd-tree is essentially the same as that of the unbalanced binary
tree. If \( n \) points are inserted in random order, then the height of the tree will be \( O(\log n) \)
in expectation. Because we chose replacement nodes in a biased way (always from the right
subtree, if it is nonempty), it is reasonable that the same systematic bias issues that lead to
With 1-dimensional search trees we never discussed the question of building a tree in a purely static context, where the points are all given in advance. (The reason is that there is no need to build a tree. You could simply sort the points and store them in an array.) However, in multi-dimensional data sets, binary search in an array is not an option. Therefore, the question of how to build a well-balanced tree for a fixed set of points is a natural one to ask. Suppose that we use the method of cycling the cutting dimension from level to level of the tree to build a kd-tree for a point set \( P \). At the root level, we could choose the splitting point to be the median of \( P \) according to \( x \)-coordinates. Then, after partitioning the set about this point, into say \( P_L \) and \( P_R \), the splitting value for each set would be the respective medians but according to the \( y \)-coordinates. By doing this, we guarantee that the number of points in each subtree is essentially half that of its parent, and this implies that the overall tree height is \( O(\log n) \).

By the way, this raises an interesting computational question. We know that it is possible to build a 1-dimensional tree from a sorted point set in \( O(n \log n) \) time, by repeatedly splitting on the median. Can you generalize this to construct a perfectly balanced 2-dimensional kd-tree also in \( O(n \log n) \) time. The tricky issue is that sorting on \( x \) does not help you in finding the \( y \)-splits, and sorting on \( y \) does not help you with the \( x \) splits. This is an interesting computational problem to think about. (The answer is that it is possible to build such a tree in \( O(n \log n) \) time, but it takes a bit of cleverness. We will leave this as an exercise.)

Nearest-Neighbor Queries: Next we consider how to perform an important retrieval query on a kd-tree. Nearest neighbor queries are among the most important queries. We are given a set of points \( P \) stored in a kd-tree, and a query point \( q \), and we want to return the point of \( P \) that is closest to \( q \). Let’s assume that distances are measured using Euclidean distances. In particular, given two points \( p = (p_1, \ldots, p_d) \) and \( q = (q_1, \ldots, q_d) \), their Euclidean distance is

\[
\text{dist}(p, q) = \sqrt{(p_1 - q_1)^2 + \cdots + (p_d - q_d)^2}.
\]

Generalizations to other sorts of distance functions (e.g., the Manhattan or taxicab distance) is also possible.

An intuitively appealing approach to nearest neighbor queries would be to find the leaf node of the kd-tree that contains \( q \) and then search this and the neighboring cells of the kd-tree. The problem is that the nearest neighbor may actually be very far away, in the sense of the tree’s structure. For example, in Fig. 7, many of the points are at nearly the same distance from the query point \( q \). It would be necessary to visit almost all the nodes of the tree to determine which of these points is the actual nearest neighbor.

We will need a more systematic approach to finding nearest neighbors. Nearest neighbor queries illustrate three important elements of range and nearest neighbor processing.

Partial results: Store the intermediate results of the query and update these results as the query proceeds.

Traversal order: Visit the subtree first that is more likely to be relevant to the final results.

Pruning: Do not visit any subtree that be judged to be irrelevant to the final results.

Nearest-neighbor utilities: Before presenting the code for nearest-neighbor searching, we introduce a few helpful utilities. First, recall that every cell of the kd-tree is associated with an
Fig. 7: A challenging case for nearest-neighbor searching.

axis-parallel rectangle, called its cell. (For \( d \geq 3 \) the generalization of a rectangle is called a hyperrectangle, but we will just use the term “rectangle” for simplicity.) A convenient way to represent a rectangle in any \( d \)-dimensional space is to give two points \( \text{low} \) and \( \text{high} \). In 2D, these represent the lower-left and upper-right corners of the rectangle, respectively. In general, the rectangle consists of all points \( x \) such that \( \text{low}_i \leq x_i \leq \text{high}_i \) (see Fig. 8(a)). A possible implementation is shown in the code block below.

```java
public class Rectangle {
 Point low; // lower left corner
 Point high; // upper right corner

 public Rectangle(Point low, Point high) { /* constructor */ }

 // do we contain q?
 public boolean contains(Point q) { ... } // distance to point q

 public float distanceTo(Point q) { ... }

 // trim left side
 public Rectangle trimLeft(int cutDim, Point x) { ... }

 // trim right side
 public Rectangle trimRight(int cutDim, Point x) { ... }
}
```

Our rectangle implementation stores the points \( \text{low} \) and \( \text{high} \). It implements a few additional functions. One determines whether a point \( q \) is contained within the rectangle, which can be done by testing that \( \text{low}_i \leq q[i] \leq \text{high}_i \), for \( 0 \leq i < d \). A second computes the minimum distance between a point \( q \) and the rectangle (see Fig. 8(b)). We leave its implementation as an exercise. Finally, we have two functions \( \text{trimLeft} \) and \( \text{trimRight} \). The first is given a cutting dimension \( \text{cutDim} \) and point \( x \) that lies within the rectangle. It returns a rectangle that results by removing the portion of the rectangle that lies to the left of \( x \), with respect to the cutting dimension, and the other removes the right portion (see Fig. 8(c)). When \( x \) is the splitting point of a node, these functions yield the left and right child cells.

**Nearest-neighbor code:** Our procedure for returning the nearest neighbor actually only returns the distance to the nearest neighbor, but it is an easy matter to modify the code to produce
both the distance and the point achieving this distance. (Think about how you would do this.) As usual, we employ a recursive utility function that works on an individual node \( p \) of the tree. The function \texttt{nearNeighbor}(q, p, cell, bestDist) is given four parameters, the query point \( q \), the current node \( p \), the rectangular cell of this node, \( \text{cell} \), and the smallest distance between \( q \) and any point seen so far in the search.

The procedure works as follows. First, if \( p \) is \texttt{null}, we must have fallen out of the tree, and we just return the current smallest distance, \texttt{bestDist} as the answer. Otherwise, we compute the distance from the point \( p\.point \) to \( q \), and update the \texttt{bestDist} value if this point is closer than the previous.

Next, we need to search the subtrees for possibly closer points. We invoke \texttt{trimLeft} and \texttt{trimRight} to determine the cells of the left and right subtrees, respectively. Next, we check which side \( p\.point \) the query point lies. If \( q \) lies to the left (below) this splitter, we will visit the left subtree first, since it is more likely to yield the nearest neighbor. The value of \texttt{bestDist} will be updated to the closest point seen so far. After returning from this call, we compute \( q \)'s distance to the right subtree cell. Observe that if this distance is greater than \texttt{bestDist}, there is no chance that the other subtree contains the nearest neighbor, and so there is no need to visit this subtree. The case where \( q \) lies to the right (above) the splitter is symmetrical. Given a query point \( q \), the initial call is \texttt{nearNeigh}(q, root, rootCell, \texttt{Float.MAX_VALUE}), where \texttt{rootCell} is the rectangle that encloses the entire tree contents, and \texttt{Float.MAX_VALUE} is the maximum possible float value. The code is presented below.

An example of the algorithm in action is shown in Fig. 9. The algorithm starts by descending to the leaf node (the upper child of \((70,30)\)), computing distances to all the points seen along the way. At this point \((70,30)\) is the closest, and its distance to \( q \) defines \texttt{bestDist}. Because the lower child of \((70,30)\) overlaps the ball of radius \texttt{bestDist}, we need to inspect this subtree. When we visit \((50,25)\), we discover that it is even closer. We visit both its children. However, observe that when we arrive at \((60,10)\), we visit the closer of its two children (the empty subtree lying above this point), but there is no need to visit its lower child, because it lies entirely outside of the ball of radius \texttt{bestDist}. We then return from the recursion. On returning to \((80,40)\) and \((70,80)\), we see that the cells of their other children lie entirely outside the ball of radius \texttt{bestDist}, and so we do not need to visit them. On returning to the root at \((35,90)\) we see that its left subtree does overlap the \texttt{bestDist} ball, and so we recurse on that subtree as well. We continue until arriving at the closest leaf to the query point, namely the right child of \((25,10)\). We compute distances too all the points
Compute distance to nearest neighbor in kd-tree

```java
float nearNeighbor(Point q, KDNode p, Rectangle cell, float bestDist) {
 if (p != null) {
 float thisDist = q.distanceTo(p.point); // distance to p's point
 bestDist = Math.min(thisDist, bestDist); // keep smaller distance

 int cd = p.cutDim; // cutting dimension
 Rectangle leftCell = cell.trimLeft(cd, p.point); // left child's cell
 Rectangle rightCell = cell.trimRight(cd, p.point); // right child's cell

 if (q[cd] < p.point[cd]) { // q is closer to left
 bestDist = nearNeighbor(q, p.left, leftCell, bestDist);
 if (rightCell.distanceTo(q) < bestDist) { // worth visiting right?
 bestDist = nearNeighbor(q, p.right, rightCell, bestDist);
 }
 } else { // q is closer to right
 bestDist = nearNeighbor(q, p.right, rightCell, bestDist);
 if (leftCell.distanceTo(q) < bestDist) { // worth visiting left?
 bestDist = nearNeighbor(q, p.left, leftCell, bestDist);
 }
 }
 }
 return bestDist;
}
```

associated with the nodes visited, and we discover along the way that (25, 50) is even closer to the query point, and thus bestDist is again reduced. After this, all the remaining cells (shaded in white in the figure) lie outside the nearest-neighbor ball, and so we can terminate the search.

**Analysis:** How efficient is this procedure? It is quite difficult to analyze from the perspective of its worst-case performance, because as seen in Fig. 7, there are cases where we may need to visit almost every node of the tree, because almost all the points are equidistant from the query point. However, this is really a very pathological example. In most instances, the typical running time is much closer to $O(2^d + \log n)$, where $d$ is the dimension of the space. Generally, you expect to visit some set of nodes that are in the neighborhood of the query point (giving rise to the $2^d$ term) and require $O(\log n)$ time to descend the tree to find these nodes.
Fig. 9: Nearest-neighbor search.