2-3, Red-black, and AA trees
“A rose by any other name...”

- Today, we will consider three search trees, which outwardly look different, but all are equivalent (or nearly so)
- All support find, insert, and delete in $O(\log n)$ time for a tree with n nodes
- These are:
 - 2-3 Trees
 - Red-black Trees
 - AA Trees
2-3 Tree
A Variable Width Tree

- **2-Node:**
 - Two children; stores one key; order: $A < b < C$

- **3-Node:**
 - Three children; stores two keys; order: $A < b < C < d < E$
2-3 Tree

Formal Definition

- **A 2-3 tree is:**
 - An empty tree (i.e., null)
 - Root is a 2-node and two subtrees are 2-3 trees of equal height
 - Root is a 3-node and its three subtrees are 2-3 trees of equal height

- **Theorem:** A 2-3 tree with \(n \) nodes has height \(O(\log n) \)

- **Proof:** (Easy) The sparsest tree is already a complete binary tree
2-3 Tree Insertion

- **Start as usual**: Find the key and note the leaf node where we fall out of the tree.
- **Insert new key in this leaf**, and **restructure** if needed:
 - 2-node → 3-node - No problem
 - 3-node → 4-node - !!
 - Split into two 2-nodes; promote middle key to parent; $4 = 2 + 2$
2-3 Tree Insertion

- **Start as usual:** Find the key and note the leaf node where we fall out of the tree
- **Insert new key in this leaf, and restructure if needed:**
 - 2-node → 3-node - No problem
 - 3-node → 4-node - !!
 - Split into two 2-nodes; promote middle key to parent; \(4 = 2 + 2\)
 - May need to fix parent or create a new root

![Diagram of 2-3 Tree Insertion](image)
2-3 Tree Insertion

- Example:

```
insert(6)
```

```
split
```

```
split
```

```
4 : 8
```

```
2
```

```
6 : 8 : 12
```

```
4
```

```
1
```

```
3
```

```
5 : 6 : 7
```

```
1
```

```
3
```

```
5 : 7 : 9 : 14
```

```
1
```

```
3
```

```
5
```

```
7
```

```
9
```

```
14
```
2-3 Tree Deletion

- Deletion as usual:
 - Find the key
 - If it is not a leaf, find the replacement node (inorder successor)
 - Copy replacement-node contents to deleted node
 - Recursively delete the replacement node
 - (We may assume that restructuring always starts at the leaf level)
2-3 Tree Deletion

- **Restructuring:**
 - 3-node → 2-node: No problem
 - 2-node → 1-node: Two possible fixes:
 - **Adopt from sibling**
 - Merge with sibling

- **Adoption:**
 - If there is a 3-node sibling
 - **Adopt** its closest subtree
 - ...and associated key
 - $1 + 3 = 2 + 2$
2-3 Tree Deletion

- **Restructuring:**
 - 3-node → 2-node: No problem
 - 2-node → 1-node: Two possible fixes:
 - Adopt from sibling
 - Merge with sibling

- **Merging:**
 - No sibling is 3-node ⇒ 2-node
 - Merge these nodes: 1 + 2 = 3
 - Demote key from parent
 - May need to fix parent or delete root
2-3 Tree Deletion

- Example:
Red-Black Trees

- 2-3 trees are not binary trees - Can we simulate the same idea as a binary tree?
- Replace each 3-node with a pair of nodes:
 - To distinguish them, we’ll color the upper node black and the lower node red
 - The result is called a Red-Black Tree
Red-Black Trees

- 2-3 trees are **not binary trees** - Can we simulate the same idea as a binary tree?
- Replace each 3-node with a pair of nodes:
 - To distinguish them, we’ll color the upper node black and the lower node red
 - The result is called a **Red-Black Tree**
Red-Black Trees

Definition:

– Each node is either red or black
– The root is black
 – This corresponds to the fact that the root is either a 2-node or the first half of a 3-node
– All null pointers are considered black
 – This is just a convenient convention
– If a node is red, then both its children are black
 – This enforces the condition that a child of the second half of a 3-node [red] must either be a 2-node [black] or the first half of a 3-node [black]
– Every path from a given node to any of its null descendants contains the same number of black nodes
 – This corresponds to the requirement that all leaves of the 2-3 tree are of equal depth
Red-Black Trees

Lemma: Every 2-3 tree corresponds to a red-black tree

- But the converse does not hold. There are valid red-black trees that are not the encoding of some 2-3 tree
- (a) The red child could be on either the left or right side
- (b) Both children of a black node may be red

In fact, red-black trees are a binary encoding of a more general tree, a 2-3-4 tree
AA Trees

- A simpler variant of the red-black tree
- Invented by Arne Anderson (1993) to simplify coding of red-black trees
- Updated definition:
 - If a node is red, then both its children are black
 - If it is the right child of a black node
- This fits exactly with our encoding of 2-3 trees as binary trees
AA Trees

Node Representation:

- **No null pointers:** Use a *sentinel node*, called `nil`.

  ```
  nil.left = nil.right = nil
  ```

 Reduces need for checking null pointers.

- **No node colors:** Every node stores a *level number*:
 - `nil` is at level 0
 - Leaves at level 1
 - If you are a *red node*, you are at the same level as your parent
 - If you are a *black node*, you are at one level less than your parent
 - Levels match levels of 2-3 tree
AA-Trees

Restructuring

- **skew(p):** If p is black and has a red left child, rotate so that the red child is now on the right.
- **split(p):** If p is black and has a right chain of two consecutive red nodes, split this triple, promoting p's right child to the next higher level.
AANode skew(AANode p) {
 if (p.left.level == p.level) { // red node to our left?
 AANode q = p.left; // do a right rotation at p
 p.left = q.right;
 q.right = p;
 return q; // return pointer to new upper node
 }
 else return p; // else, no change needed
}

AANode split(AANode p) {
 if (p.right.right.level == p.level) { // right-right red chain?
 AANode q = p.right; // do a left rotation at p
 p.right = q.left;
 q.left = p;
 q.level += 1; // promote q to next higher level
 return q; // return pointer to new upper node
 }
 else return p; // else, no change needed
}
AA Trees - Insertion

Insertion

- Search for the new key and note where we fall out of the tree
- Insert a new (red) leaf node here (at level 1)
- Work back towards the root and *restructure* along the way
 - Left child is red? → skew
 - Two red children to the right? → split
AA Trees

Insertion

AANode insert(Key x, Value v, AANode p) {
 if (p == nil) // fell out of the tree?
 p = new AANode(x, v, 1, nil, nil); // ... create a new leaf node here
 else if (x < p.key) // x is smaller?
 p.left = insert(x, v, p.left); // ...insert left
 else if (x > p.key) // x is larger?
 p.right = insert(x, v, p.right); // ...insert right
 else
 throw DuplicateKeyException; // duplicate key!
 return split(skew(p)); // restructure and return result
}

Only difference with standard binary search tree insertion
AA-Trees

Insertion Example
AA-Trees - Deletion

- Find the node to delete
- If it is not a leaf, find replacement at the leaf level and delete replacement
- Work back towards the root and restructure along the way
 - More cases than with insertion
 - Basic issue is that a node’s level may decrease
- Possibly 3 skew invocations:
 - skew(p), skew(p.right), skew(p.right.right)
- Possibly 2 split invocations:
 - split(p), split(p.right)
AA Trees

Deletion - Restructuring Utilities

```c
AANode updateLevel(AANode p) {                  // update p's level
    int idealLevel = 1 + min(p.left.level, p.right.level);
    if (p.level > idealLevel) {                 // p's level is too high?
        p.level = idealLevel;                   // decrease its level
        if (p.right.level > idealLevel)         // p's right child red?
            p.right.level = idealLevel;         // ...fix its level as well
    }
    return p;
}
```

```c
AANode fixupAfterDelete(AANode p) {                // update p's level
    p = updateLevel(p);                           // skew p
    p = skew(p);                                  // ...and p's right child
    p.right = skew(p.right);                      // ...and p's right-right grandchild
    p.right.right = skew(p.right.right);          // split p
    p = split(p);                                // ...and p's (new) right child
    p.right = split(p.right);
    return p;
}
```
AA Trees - Deletion

AANode delete(Key x, AANode p) {
 if (p == nil) // fell out of tree?
 throw KeyNotFoundException; // ...error - no such key
 else {
 if (x < p.key) // look in left subtree
 p.left = delete(x, p.left);
 else if (x > p.key) // look in right subtree
 p.right = delete(x, p.right);
 else { // found it!
 if (p.left == nil && p.right == nil)// leaf node?
 return nil; // just unlink the node
 else if (p.left == nil) { // no left child?
 AANode r = inorderSuccessor(p); // get replacement from right
 p.copyContentsFrom(r); // copy replacement contents here
 p.right = delete(r.key, p.right);// delete replacement
 }
 else { // no right child?
 AANode r = inorderPredecessor(p);// get replacement from left
 p.copyContentsFrom(r); // copy replacement contents here
 p.left = delete(r.key, p.left); // delete replacement
 }
 }
 }
 return fixupAfterDelete(p); // fix structure after deletion
}

s
AA-Trees

Deletion Example

\[
\text{delete}(1) \quad \Rightarrow \quad \text{updateLevel} \quad \Rightarrow \quad \text{updateLevel} \quad \Rightarrow \quad \text{skew} \quad \Rightarrow \quad \text{skew}
\]
Summary

- 2-3 Trees
- Insertion
 - Splitting nodes
- Deletion
 - Adoption
 - Merging
- Red-black trees - Model 2-3-4 trees
- AA trees - Simplified red-black trees
 - Skew and split to restructure