B Trees
B-Trees

A Search Structure for External Memory

- Binary trees are the method of choice for ordered dictionaries stored in main memory
- On external memory systems (disk), entire blocks (pages) are accessed at once
- We would like each node of our tree to fill a block of external memory
- Multiway search tree - Fan-out depends on block size (e.g., 100)

\[a \]

\[T_1 \]
\[T_2 \]
\[T_3 \]
\[T_4 \]

\[x < a \]
\[x > a \]

\[x < a_1 \]
\[a_1 < x < a_2 \]
\[a_2 < x < a_3 \]
\[a_3 < x \]
B-Trees

- **B-Tree of order m:**
 - The root is either a leaf or has between 2 and m children
 - Each non-root node has between $m/2$ to m children (and one fewer keys)
 - All leaves are at the same level of the tree

- **Example:** B-tree of order 5
B Trees

Height

- **Theorem:** A B-tree of order m with n nodes has height at most $(\lg n)/\gamma$, where $\gamma = \lg \frac{m}{2}$.

- **Proof:**
 - With each level, fan-out is at least $m/2$.
 - Number of nodes in a tree of height h is roughly $n = \left(\frac{m}{2}\right)^h$.
 - Solving for h as function of n, implies $h = \lg n / \lg \frac{m}{2}$

- If $m = 100$, height $\leq \lg n/5.6$
Because number of keys/children may vary, we allocate the maximum allowed storage for each node:

```cpp
const int M = ... // order of the B-tree

class BTreeNode {
    int nChildren; // number of children (from M/2 to M)
    BTreeNode child[M]; // children pointers
    Key key[M-1]; // keys
    Value value[M-1]; // values
};
```

Setting M=3 yields a 2-3 tree, M=4 yields a 2-3-4 tree
B-Trees - Rebalancing operations

Key Rotation (Adoption)

- If node overflows (underflows), and sibling can take (give) a key, rotate the key through the parent out of (into) this node

- Example \((M = 5)\): Node \(p\) needs a key and sibling \(q\) can give one
B-Trees - Rebalancing operations

Node splitting

- If a node has too many children \((m + 1)\), split the node in half and promote extra key to parent

- New nodes have \(m' = \left\lfloor \frac{m}{2} \right\rfloor\) and \(m'' = (m + 1) - m'\) children, respectively
B-Trees - Rebalancing operations

Node splitting

- Need to prove that new node sizes are valid
- Lemma 1: For all \(m \geq 2 \), \(\left\lfloor \frac{m}{2} \right\rfloor \leq m' \), \(m'' \leq m \)
- Proof: This is clearly true for \(m' \). Suffices to consider just \(m'' \).
 - Case 1 (\(m \) is even):
 - \(\Rightarrow \left\lfloor \frac{m}{2} \right\rfloor = \frac{m}{2} \Rightarrow m'' = m + 1 - \frac{m}{2} = \frac{m}{2} + 1 \).
 - The lemma reduces to proving that \(\frac{m}{2} \leq \frac{m}{2} + 1 \leq m \), which is clearly true for any \(m \geq 2 \).
 - Case 2 (\(m \) is odd):
 - \(\Rightarrow \left\lfloor \frac{m}{2} \right\rfloor = \frac{m+1}{2} \Rightarrow m'' = m + 1 - \frac{m+1}{2} = \frac{m+1}{2} \).
 - The lemma reduces to proving that \(\frac{m+1}{2} \leq \frac{m+1}{2} \leq m \), which is clearly true for any \(m \geq 1 \).
B-Trees - Rebalancing operations

Node merging

- If a node has too few children ($\left\lceil \frac{m}{2} \right\rceil - 1$), and both siblings have the minimum ($\left\lceil \frac{m}{2} \right\rceil$), merge node with sibling and demote one key from parent.

- The new node has size $m''' = \left(\left\lceil \frac{m}{2} \right\rceil - 1\right) + \left\lceil \frac{m}{2} \right\rceil = 2 \left\lceil \frac{m}{2} \right\rceil - 1$
B-Trees - Rebalancing operations

Node merging

- Need to prove that new node size is valid
- **Lemma 2**: For all \(m \geq 2 \), \(\left\lfloor \frac{m}{2} \right\rfloor \leq m''' \leq m
- **Proof**:
 - Case 1 (\(m \) is even):
 - \(\Rightarrow \left\lfloor \frac{m}{2} \right\rfloor = \frac{m}{2} \Rightarrow m''' = 2 \left(\frac{m}{2} \right) - 1 = m - 1 \).
 - The lemma reduces to proving that \(\frac{m}{2} \leq m - 1 \leq m \), which is clearly true for any \(m \geq 2 \).
 - Case 2 (\(m \) is odd):
 - \(\Rightarrow \left\lfloor \frac{m}{2} \right\rfloor = \frac{m+1}{2} \Rightarrow m''' = 2 \left(\frac{m}{2} \right) - 1 = 2 \frac{m+1}{2} - 1 = m \).
 - The lemma reduces to proving that \(\frac{m+1}{2} \leq m \leq m \), which is clearly true for any \(m \geq 1 \).
B-Trees - Dictionary operations

Find operation

- **Find(Key x):**
 - Finding a key is analogous to 2-3 trees
 - Descend the tree from the root
 - Let $a_1 < a_2 < \cdots < a_{j-1}$ be keys of current node (convention: $a_0 = -\infty, a_j = +\infty$)
 - Let T_1, T_2, \ldots, T_j be children
 - Find i such that $a_{i-1} < x \leq a_i$:
 - If $a_i = x$, found it
 - Else, if node is leaf, not found
 - Else, search T_i
B-Trees - Dictionary operations

Insertion operation

- `insert(\text{Key } x, \text{Value } v)$:
 - Find the leaf node where x belongs
 - If x is already here - \text{Error}
 - Else, insert new (x, v) pair in this leaf
 - If node is overfull, attempt \text{key rotation} with siblings
 - If siblings are both full, \text{split} this node
 - One key is promoted to parent, rebalance the parent \text{recursively}

\textbf{Note:} Key rotation and splitting are both options. Key \text{rotation is preferred} because it is \text{less costly} and \text{improves space utilization}
B-Trees - Dictionary operations

Insertion operation

- Example: \texttt{insert(29)} (M=5)
B-Trees - Dictionary operations

Deletion operation

- delete(Key x, Value v):
 - Find the node containing x
 - If not found - Error
 - If not in leaf, find suitable replacement key from leaf level (largest in left subtree or smallest in right subtree), and copy it here
 - Delete the replacement key:
 - If node is underfull, attempt key rotation with siblings
 - If both siblings are minimal, merge this node with either sibling
 - One key is demoted from parent, rebalance the parent recursively
Example: `delete(20) (M=5)`

Deletion operations
Example: delete(30) (M=5)
B-Trees - Variants

B+ Trees

- There are a number of variants of B-trees.
- **B+ trees**: A popular variant, used in disk storage
 - Key-value pairs are stored **only at leaves**
 - Internal nodes need only **store keys**, not values. (Saves space, bigger fan-out implies lower tree height, fewer disk accesses)
 - Leaf nodes do **not** need to waste space for **child pointers**
 - Each leaf node has a pointer to the **next leaf node** in the sequence. (Makes it easy to efficiently list all keys in a given range \([x_{min}, x_{max}]\). Find the leaf containing \(x_{min}\) and simply keep following next-leaf pointers until coming to \(x_{max}\).
Summary

- **B-Trees**
 - Multiway search trees - Very popular for disk storage
 - Fan-out m is controllable
 - Height is $O(\log n / \log m)$
 - Restructuring generalizes 2-3 tree:
 - Node rotation (adoption)
 - Split
 - Merge
 - Operations (insert, delete, find) run in time $O(\log n / \log m)$

- **B+ Trees** - A practical variant for disk storage