Hashing

Recap

- So far, we have discussed a variety of structures for dictionaries:
 - insert
 - delete
 - find
- We have assumed a comparison-based model (e.g., $x < p.key$)
- Finding a key among n elements requires $O(\log n)$ time, cannot hope for better
- Hashing: if we abandon comparisons, we can find keys in $O(1)$ expected time!
We store the n keys in a table containing m entries.

We assume that the table size m is at least a constant factor larger than n.

- E.g., $m > c \cdot n$, where $c = 1.25$.

We scatter the keys throughout the table using a pseudo-random hash function.

- $h(x) \in [0 \ldots m - 1]$.
- Store x at entry $h(x)$ in the table.

Sometimes different keys will map to the same location, $x \neq y$, but $h(x) = h(y)$.

This is a collision, and we will need strategies for resolving them (next time).

If the number of keys colliding with x is small ($O(1)$), then we can access x in $O(1)$ time.
Hash Functions

Desirable properties

- A good hash function h should:
 - Should be efficiently computable (constant time)
 - Should produce few collisions
 - Use every bit of the input key
 - Break up (scatter) naturally occurring clusters of keys

- For example, keys “temp1”, “temp2”, and “temp3” should not be stored in consecutive entries of the hash table
Some popular functions:

- **Division Hashing**: \(h(x) = x \mod m \) (Simple, but not very strong)
- **Multiplicative Hashing**: \(h(x) = (a \cdot x) \mod m \) or \(h(x) = ((ax) \mod p) \mod m \), where \(a \) and \(p \) are large primes
- **Linear Hashing**: \(h(x) = a \cdot x + b \mod m \) or \(h(x) = ((ax + b) \mod p) \mod m \), where \(a, b \) and \(p \) are large primes

Why mod with both \(p \) and \(m \)?

- \(m \) is often a power of 2, and so \(x \mod m \) is just the lower-order bits of \(x \)
- Taking mod \(p \) is much more “random”. Then do “mod \(m \)” to reduce to table size.
Hash Functions

Polynomial Hashing - Finer Points

- **Polynomial Hashing:**
 - Compute a polynomial function of the key. Convenient when the key is a sequence of numbers (e.g., a character string)
 - Let: \(x = (c_0, c_1, c_2, c_3, \ldots) \), and let \(p \) be a suitable prime
 - Then: \(h(x) = (c_0 + c_1 p + c_2 p^2 + c_3 p^3 + \cdots) \mod m \)

- **Computing polynomial functions efficiently - Horner’s rule**
 - \((c_0 + c_1 p + c_2 p^2 + c_3 p^3 + \cdots) = c_0 + p(c_1 + p(c_2 + p(c_3 + \cdots))) \)
Computing polynomial functions efficiently - Horner's rule

\[(c_0 + c_1 p + c_2 p^2 + c_3 p^3 + \cdots) = c_0 + p(c_1 + p(c_2 + p(c_3 + \cdots))) \]

```
public int hash(String c, int m) {  // polynomial hash of a string
    final int P = 37;               // replace this with whatever you like
    int hashValue = 0;
    for (int i = c.length()-1; i >= 0; i--) { // Horner's rule
        hashValue = P * hashValue + Character.getNumericValue(c.charAt(i));
    }
    return hashValue % m;           // take the final result mod m
}
```
Randomization and Universal Hashing

- Assuming the keys are not known in advance, no hashing function is "perfect" - collisions are inevitable
- But randomness can help
- Intuition: By selecting the hash function randomly, it will be good (in expectation) for any given pair of keys
Randomization and Universal Hashing

- **Universal Hashing:**
 - A “bag” of possible hash functions H
 - Select one function h from the bag at random
 - The system is universal if, for any x, y, the probability that $h(x) = h(y)$ for a randomly chosen function h is $\frac{1}{m}$

- **Carter & Wegman (1977):** There exist universal hash functions
 - Pick a large prime p (larger than any possible key)
 - Pick a at random from $\{1, 2, ..., p - 1\}$
 - Pick b at random from $\{0, 1, 2, ..., p - 1\}$
 - Hash function: $h_{a,b}(x) = ((ax + b) \mod p) \mod m$
Randomization and Universal Hashing

- **Theorem:** Consider any two integers x and y, where $0 \leq y < x < p$. Let $h_{a,b}$ be a random hash function described in the previous slide. Then the probability that $h_{a,b}(x) = h_{a,b}(y)$ is at most $1/m$.

- **Proof:** (See full lecture notes)
Summary

- Hashing -
 - Basic concept
 - Hash functions

- Stay tuned -
 - Collision resolution methods