Hashing - Handling Collisions
Hashing - Recap

- We store the n keys in a table containing m entries
- We assume that the table size m is at least a small constant factor larger than n
- We scatter the keys throughout the table using a pseudo-random hash function
 - $h(x) \in [0 \ldots m - 1]$
 - Store x at entry $h(x)$ in the table
- Sometimes different keys collide: $x \neq y$, but $h(x) = h(y)$
Hashing - Recap

Defining issues

- **What is the hash function?** Recall common methods:
 - **Multiplicative hashing:** $h(x) = (ax) \mod p \mod m$ (for $a \neq 0$ and prime p)
 - **Linear hashing:** $h(x) = (ax + b) \mod p \mod m$ (for $a \neq 0$ and prime p)
 - **Polynomial:** $x = (c_0, c_1, c_2, c_3, \ldots)$, $h(x) = (c_0 + c_1 p + c_2 p^2 + c_3 p^3 + \cdots) \mod m$
 - **Universal hashing:** $h_{a,b}(x) = ((ax + b) \mod p) \mod m$ (where, a and b are random and p is prime)

- **How to resolve collisions?** We will consider several methods:
 - Separate chaining
 - Linear probing
 - Quadratic probing
 - Double hashing
Separate Chaining

- Given a hash table `table` with `m` entries
- `table[i]` stores a linked list containing the keys `x` such that `h(x) = i`

```plaintext
insert("d")  h("d") = 1
insert("z")  h("z") = 4
insert("p")  h("p") = 7
insert("w")  h("w") = 0
insert("t")  h("t") = 4
insert("f")  h("f") = 0
```

```
table

0  → w → f
    ↓
1  → d
    ↓
2  → ∅
    ↓
3  → ∅
    ↓
4  → z → t
    ↓
5  → ∅
    ↓
6  → ∅
    ↓
7  → p
```

`m = 8`
Separate Chaining

Hash operations reduce to linked-list operations

- **insert(x, v):** Compute \(i=h(x) \), invoke \(\text{table}[i].\text{insert}(x,v) \)
- **delete(x):** Compute \(i=h(x) \), invoke \(\text{table}[i].\text{delete}(x) \)
- **find(x):** Compute \(i=h(x) \), invoke \(\text{table}[i].\text{find}(x) \)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Hash Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert("d")</td>
<td>h("d") = 1</td>
</tr>
<tr>
<td>insert("z")</td>
<td>h("z") = 4</td>
</tr>
<tr>
<td>insert("p")</td>
<td>h("p") = 7</td>
</tr>
<tr>
<td>insert("w")</td>
<td>h("w") = 0</td>
</tr>
<tr>
<td>insert("t")</td>
<td>h("t") = 4</td>
</tr>
<tr>
<td>insert("f")</td>
<td>h("f") = 0</td>
</tr>
</tbody>
</table>

\(m = 8 \)
Separate Chaining
Load factor and running time

- Given a hash table table[m] containing n entries
- Define load factor: $\lambda = \frac{n}{m}$
- Assuming keys are uniformly distributed, there are on average λ entries per list
- Expected search times:
 - Successful search (key found): Need to search half the list on average
 \[S_{SC} = 1 + \frac{\lambda}{2} \]
 - Unsuccessful search (key not found): Need to search entire list
 \[U_{SC} = 1 + \lambda \]
Controlling the Load Factor

Rehashing

- Clearly, we want to keep load factors small, typically $0 < \lambda < 1$
- Select min and max load factors, λ_{min} and λ_{max}, where $0 < \lambda_{\text{min}} < \lambda_{\text{min}} < 1$
- Define ideal load factor $\lambda_0 = (\lambda_{\text{min}} + \lambda_{\text{max}})/2$
- Rehashing (after insertion):
 - If insertion causes load factor to exceed λ_{max}:
 - Allocate a new hash table of size $m' = \frac{n}{\lambda_0}$
 - Create a new hash function h' for this table
 - Rehash all old entries into the new table using h'
 - After rehashing, the load factor is now $\frac{n}{m'} = \lambda_0$, that is, “ideal”
Rehashing

Example: $\lambda_{\text{min}} = \frac{1}{4}$, $\lambda_{\text{max}} = \frac{3}{4}$ and $\lambda_0 = \frac{1}{2}$

insert(a)

$n = 7$
$m = 8$
$\lambda = \frac{7}{8} > \lambda_{\text{max}}$!!

rehash

$n = 7$
$m' = 14$
$\lambda = \frac{7}{14} = \lambda_0$
Controlling the Load Factor

Rehashing

- **Underflow**: Rehashing can also be applied when the load factor is too small
- **Rehashing (after deletion)**:
 - If deletion causes load factor to be smaller than λ_{min}:
 - Allocate a new hash table of size $m' = \frac{n}{\lambda_0}$
 - Create a new hash function h' for this table
 - Rehash all old entries into the new table using h'
 - After rehashing, the load factor is now $\frac{n}{m'} = \lambda_0$, that is, “ideal”
Rehashing - Amortized Analysis

How expensive is rehashing?

- Rehashing takes time - How bad is it?
- Rehashing takes $O(n)$ time, but once done we are good for a while

- Example:

 - Suppose $m = 1000$, $\lambda_{\min} = \frac{1}{4}$ and $\lambda_{\max} = \frac{3}{4}$, ($\lambda_0 = \frac{1}{2}$)

 - After insertion, if $n > \lambda_{\max} = 750$, then we allocate a new table of size $m' = n/\lambda_0 \approx 1500$, and rehash the entries here

 - In order to overflow again, we need $n'/m' > \lambda_{\max}$

 - That is, we need $n' = 1125$ keys, or equivalently at least $1125 - 750 = 375$ insertions

 - Amortization: We charge the (expensive) work of rehashing to these (cheap) insertions
Rehashing - Amortized Analysis

How expensive is rehashing?

- **Theorem**: Assuming that individual hashing operations take $O(1)$ time each, if we start with an empty hash table, the amortized complexity of hashing using the above rehashing method with load factors of λ_{min} and λ_{max}, respectively, is at most $1 + \frac{2\lambda_{max}}{(\lambda_{max} - \lambda_{min})}$

- **Proof**:
 - **Token-based argument**: Each time we perform a hash-table operation, we assess 1 unit for the actual operation and save $\frac{2\lambda_{max}}{(\lambda_{max} - \lambda_{min})}$ work tokens for future use
 - **Two cases**: Overflow and underflow
Rehashing - Amortized Analysis

How expensive is rehashing?

- **Token-based argument**: Each time we perform a hash-table operation, we assess 1 unit for the actual operation and save \(2\lambda_{\text{max}}/(\lambda_{\text{max}} - \lambda_{\text{min}})\) work tokens for future use.

- **Overflow**:
 - Current table has \(n \approx \lambda_{\text{max}} m\) entries. This is the cost of rehashing.
 - Just after the previous rehash, table contained \(n' = \lambda_0 m\) entries.
 - Since then, we performed at least \(n - n' = (\lambda_{\text{max}} - \lambda_0) m\) insertions.
 - By simple math, we have \(\lambda_{\text{max}} - \lambda_0 = \lambda_{\text{max}} - \frac{\lambda_{\text{max}} + \lambda_{\text{min}}}{2} = (\lambda_{\text{max}} - \lambda_{\text{min}})/2\).
 - Thus, the number of tokens collected is at least \((2\lambda_{\text{max}}/(\lambda_{\text{max}} - \lambda_{\text{min}})) \cdot (\lambda_{\text{max}} - \lambda_0) m = \lambda_{\text{max}} m \approx n\).
 - In summary, we have enough tokens to pay for rehashing!

- **Underflow**: (Similar...see lecture notes)
Open Addressing

- Separate chaining requires **additional storage**. Can we avoid this?
- Store everything in the **table**
- Requires that \(n \leq m \), that is, \(\lambda \leq 1 \).
- **Open Addressing:**
 - Special entry “**empty**” indicates that this table entry is **unused**
 - To insert \(x \), first check \(\text{table}[h(x)] \). If empty, then store here
 - Otherwise, probe subsequent table entries until finding an empty location
 - Which entries to probe? Does it matter?
 - Yes! As the **load factor approaches 1**, some probe methods have good performance and others do not
Open Addressing - Linear Probing
Quick and dirty (maybe too quick and dirty)

- Linear probing:
 - If table[h(x)] is not empty, try h(x)+1, h(x)+2, ..., h(x)+j, until finding the first empty entry
 - Wrap around if needed: table[(h(x)+j) % m]

- Example:

 ![Diagram showing linear probing with examples of insert operations for letters d, z, p, w, and t, with hash function values and corresponding table entries.](image-url)
Open Addressing - Linear Probing

Secondary clustering

- **Primary clustering**: Clusters that occur due to many keys hashing to the same location. (Should not occur if you use a good hash function)

- **Secondary clustering**: Clustering that occurs because collision resolution fails to disperse keys effectively

- **Bad news**: Linear probing is highly susceptible to secondary clustering
Open Addressing - Linear Probing
Secondary clustering

- **Expected search times:**
 - **Successful search** (key found): \(S_{LP} = \frac{1}{2} \left(1 + \frac{1}{1-\lambda} \right) \)
 - **Unsuccessful search** (key not found): \(U_{LP} = \frac{1}{2} \left(1 + \frac{1}{1-\lambda} \right)^2 \)
 - A table becomes full, \(\lambda \rightarrow 1 \), \(U_{LP} \) grows very rapidly
Open Addressing - Quadratic Probing

An attempt to avoid secondary clustering

- Linear probing: $h(x) + 1, 2, 3, \ldots, i$ clusters keys very close to the insertion point

- Quadratic probing: $h(x) + 1, 4, 9, \ldots, i^2$ disperses keys better, reducing clustering
Open Addressing - Quadratic Probing
An attempt to avoid secondary clustering

- **Quadratic probing**: \(h(x) + 1, 4, 9, \ldots, i^2 \) disperses keys better, reducing clustering
- Let \(\text{table}[i].\text{key} \) and \(\text{table}[i].\text{value} \) be the key and value
- **Cute trick**: \(i^2 = (i - 1)^2 + (2i - 1) \). For next offset, add \(2i + 1 \) to previous offset
- **Pseudo-code for find(x)**:

```
Value find(Key x) {
    int c = h(x) // initial probe location
    int i = 0 // probe offset
    while (table[c].key != empty) && (table[c].key != x) {
        c += 2*(++i) – 1 // next position
        c = c % m // wrap around
    }
    return table[c].value // return associated value (or null if empty)
}
```
Open Addressing - Quadratic Probing

An attempt to avoid secondary clustering

- **Quadratic probing:**
 - More formally, the probe sequence is \(h(x) + f(i) \), where \(f(i) = i^2 \)

- **Complete coverage?**
 - Does the probe sequence hit every possible table location?
 - No! For example, if \(m = 4 \), \(i^2 \mod 4 \) is either 0 or 1, never 2 or 3. (Try it!)

- **Any hope?** Can we select \(m \) so that quadratic probing hits all entries?
 - If \(m \) is prime of the form \(4k + 3 \), quadratic probing will hit every table entry before repeating (source: Wikipedia)
 - If \(m \) is a power of 2, and we use \(f(i) = \frac{1}{2}(i^2 + i) \), quadratic probing will hit every table entry before repeating (source: Wikipedia)
An attempt to avoid secondary clustering

Theorem: If quadratic probing is used, and the table size m is a prime number, the first $\left\lfloor \frac{m}{2} \right\rfloor$ probe sequences are distinct.

Proof:

- By contradiction. Suppose that there exist i, j, such that $0 \leq i < j \leq \left\lfloor \frac{m}{2} \right\rfloor$ and $h(x) + i^2$ and $h(x) + j^2$ are equivalent modulo m.
- Then the following equivalences hold mod m:
 \[i^2 \equiv j^2 \iff i^2 - j^2 \equiv 0 \iff (i + j)(i - j) \equiv 0 \pmod{m} \]

- Since m is prime, both $i + j$ and $i - j$ must be multiples of m. But since $0 \leq i < j \leq \left\lfloor \frac{m}{2} \right\rfloor$, both quantities are smaller than m, and hence cannot be multiples. Contradiction!
Open Addressing - Double Hashing

Saved the best for last

- Linear probing suffers from secondary clustering
- Quadratic probing may fail to hit all cells
- Double hashing:
 - Probe offset is based on a second hash function $g(x)$
 - Probe sequence: $h(x), h(x) + g(x), h(x) + 2g(x), h(x) + 3g(x), \ldots$
Open Addressing - Double Hashing

Saved the best for last

- **Double hashing:**
 - Probe offset is based on a second hash function \(g(x) \)
 - Probe sequence: \(h(x), h(x) + g(x), h(x) + 2g(x), h(x) + 3g(x), \ldots \)

- **Will this hit all entries before cycling?**
 - Yes! If \(m \) and \(g(x) \) are relatively prime, share no common factors. (E.g., Making \(m \) prime or \(g(x) \) prime guarantees this)
Open Addressing - Double Hashing

Saved the best for last

- Double hashing has the best search times among all the methods covered so far:
 - Successful search (key found): \(S_{DH} = \frac{1}{\lambda} \ln \left(\frac{1}{1-\lambda} \right) \)
 - Unsuccessful search (key not found): \(U_{DH} = \frac{1}{1-\lambda} \)

- Some sample values:

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>0.5</th>
<th>0.75</th>
<th>0.9</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U(\lambda))</td>
<td>2.00</td>
<td>4.00</td>
<td>10.0</td>
<td>20.0</td>
<td>100</td>
</tr>
<tr>
<td>(S(\lambda))</td>
<td>1.39</td>
<td>1.89</td>
<td>2.56</td>
<td>3.15</td>
<td>4.65</td>
</tr>
</tbody>
</table>
Open Addressing - Deletion

Deletion requires care!

- Deleted entries can create the illusion we are at the end of the probe sequence.

```
insert("a")
```

```
delete("f")
```

```
find("a")
```

"a" not found!
Open Addressing - Deletion

Quick and dirty fix

- Special entry “deleted”: The item at this location has been deleted
 - When searching: don’t stop here
 - When inserting: a key can be placed here

```
find("a")
```

```
delete("f")
```

```
(keep searching)
```

“a” found!
Hashing - Further Refinements

- Hashing has been around a long time, and numerous refinements have been proposed
- Example: Brent’s Method
 - When using double hashing, multiple probe sequences (with different values of g(x)) may overlap at a common cell of the hash table, say table[i]
 - One of these sequence places its key in table[i], and for the other, this wasted cell just adds to the search times
 - To improve average search times, we should give ownership of the cell to the longer of the two probe sequences (and move the other key later in its probe sequence)
 - Brent’s algorithm optimizes the placement of keys in overlapping probe sequences
Summary

- Hashing - The fastest implementation of the dictionary data type
 - Does not support ordered operations (min, max, range query, kth smallest, ...)
 - Key elements:
 - Hash function - Linear, Polynomial, Universal hashing
 - Collision resolution
 - Separate chaining
 - Open Addressing:
 - Linear probing
 - Quadratic probing
 - Double hashing
 - Analysis: Load factors, rehashing and amortized efficiency