Extended and Scapegoat Trees
Overview

- In today’s lecture, we will discuss two unrelated topics that arise in the programming assignment:
 - Extended Binary Search Trees
 - Scapegoat Trees
- We will also discuss the SG Tree, which is featured in the Programming Project, Part 1
Extended Binary Search Trees

- **Extended Binary Tree** (from Lecture 3)
 - **Internal nodes**: Have exactly 2 children
 - **External nodes**: Have 0 children

- **Basic properties**
 - Any extended binary tree with n internal nodes has $n + 1$ leaves
Extended Binary Search Trees

- Each external node contains an entry, a **key-value pair**, \((x, v)\)
- Each internal node contains a **splitter**, \(s\)
 - If \(x \leq s\) → Left subtree
 - If \(x > s\) → Right subtree

Note that a key can be both a splitter and part of a key-value pair

\[\begin{array}{c}
s\\ & \leq s & > s \\
\end{array}\]
Extended Binary Search Trees

Why?

- **Memory locality**: We saw with B+ trees, we can store many splitters in a single node, increasing fan-out, thus decreasing tree height

- **Heterogenous data**: In some applications the data and splitters are different
 - Example: *Binary-space partition tree*
 - Data are points
 - Splitters are lines
Extended Binary Search Trees
Differences with standard (unbalanced) binary search trees

- **find(x):**
 - Descend to the external node, as directed by internal nodes
 - If key matches - then found, else not
 - **Warning:** Matching a splitter means nothing!

- **Example:**
 - find(7) - yes
 - find(15) - no
 - find(10) - **no!** (even though root matches)
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- **insert(x,v):**
 - Descend to the external node. Let \(y \) be its key. If \(x = y \) - duplicate-key error
 - Create a new external node for \(x \) and internal node to split between \(x \) and \(y \)
 - Splitter \(s \) satisfies: \(\min(x, y) \leq s < \max(x, y) \)
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- **delete(x):**
 - Descend to the external node. Let \(y \) be its key. If \(x \neq y \) - key-not-found error
 - Replace this node and its parent with its sibling
Scapegoat Trees
Another Amortized Dictionary Data Structure

- **Amortized cost** -
 - The total cost divided by the number of operations
 - **Splay trees** - Amortized cost $O(\log n)$ for dictionary operations, even though any single operation may take $O(n)$ time

- **Are there other efficient dictionaries in the amortized sense?** **Scapegoat trees**!

- **Origins:**
 - Original idea by Arne Andersson (of AA-Tree fame), 1989
 - Rediscovered by Galperin and Rivest, 1993 (gave the name “Scapegoat Tree”)

- **Resources:**
 - http://opendatastructures.org/versions/edition-0.1g/ods-python/8_Scapegoat_Trees.html
 - http://opendatastructures.org/newhtml/ods/latex/scapegoat.html
Scapegoat Trees
Another Amortized Dictionary Data Structure

- Why should we care?
 - Amortized structures are often simpler than worst-case efficient structures
 - The update rules for scapegoat trees can be adapted to many other search trees where rotations cannot be applied (e.g., spatial decomposition trees)
 - The SG Tree in the programming assignment is a variant of the scapegoat tree
Scapegoat Trees
Overview - Balance through Rebuilding

- **Insertion:**
 - Insert just as in a standard (unbalanced) binary tree
 - Monitor the depth of the inserted node after each insertion
 - If it is too high, then there must be at least one node on the search path that has poor weight balance (left and right children have very different sizes)
 - Find such a node - it’s the scapegoat! (It is given the blame for the high depth)
 - Rebuild the subtree rooted at this node so that it is perfectly balanced

- **Deletion:**
 - Delete as in a standard (unbalanced) binary tree
 - Once the number of deletions is sufficiently large relative to the entire tree size, rebuild the entire tree so it is perfectly balanced
Scapegoat Trees
Overview - Balance through Rebuilding

- How to rebuild a subtree?
 - Perform an inorder traversal of the subtree, and copy the n elements to a (sorted) array $A[0 ... n - 1]$
 - Take the median of the array as the root, and recursively build left and right subtrees from the two halves of the array

- buildSubtree(A, i, k): Build subtree for k-element subarray $A[i ... i + k - 1]$
 - If $k = 0$, return null
 - Otherwise, let $m = \left\lfloor \frac{k}{2} \right\rfloor$. Create new node p with median key, $A[i + m]$
 - $p.left = buildSubtree(A, i, m)$
 - $p.right = buildSubtree(A, i+m+1, k-m-1)$

- A subtree with n nodes can be rebuilt in $O(n)$ time
Scapegoat Trees
Overview - Details

- A scapegoat tree stores **no balance or height information** with the nodes
- In addition to the tree we maintain:
 - n - the current number of nodes in the tree
 - m - an upper bound on the tree size (we maintain: $n \leq m \leq 2n$)

Height condition: never exceeds $\log_{3/2} m$ (\Rightarrow Tree height is $O(\log n)$)

Size condition:
 - Initially: $n = m = 0$
 - After insertion: $n++$, $m++$
 - After deletion: $n--$ (but do not change m)
 - If $2n < m$, rebuild the entire tree, and set $m = n$
Scapegoat Trees

Overview - More Details

- **find(x):**
 - Identical to any binary search time (time: $O(\log n)$)

- **delete(x):**
 - Identical to delete for an unbalanced binary tree
 - Decrement n (but do not change m)
 - If $2n < m$, rebuild the entire tree, and set $m = n$
Scapegoat Trees
Overview - More Details

- **insert(x):**
 - Same as standard binary search tree insertion, keep track of inserted node’s **depth** (number of edges from the root)
 - If inserted depth **exceeds** $\log_{3/2} m$:
 - Walk back up the search path until we find the **first node** u such that
 $$\frac{\text{size}(u. \text{child})}{\text{size}(u)} > \frac{2}{3}$$
 - Here $\text{size}(u)$ is the number of nodes in u’s subtree and $u.\text{child}$ is u’s child on search path
 - A node on the insertion path satisfying this is called a **candidate scapegoat**
 - Rebuild the subtree rooted at u
 - Increment both n and m
Scapegoat Trees

Overview - More Details

- `insert(5)`:

```
         13
        /   \
       12    15
      /     /    \
     9     17     \
    /       \
   2        3
  /  \
 0   1
```

```
         13
        /   \
       12    15
      /     /    \
     9     17     \
    /       \
   2        3
  /  \
 0   1
```

```
       13
      /   \
     12    15
    /     /    \
   9     17     \
  /       \
2        3
 /  \
0   4
```

```
       13
      /   \
     12    15
    /     /    \
   9     17     \
  /       \
6 > log_{2/3} 11 \approx 5.9!!
```

```
       13
      /   \
     12    15
    /     /    \
   9     17     \
  /       \
6 > log_{2/3} 11 \approx 5.9!!
```
Scapegoat Trees

Overview - More Details

- Will we always find a scapegoat node? Yes!
- Is it unique? No! (9, 12, and 13 are all candidate scapegoats)
- Lemma: If there exists a node \(p \) such that \(\text{depth}(p) > \log_{3/2} m \), then \(p \) has an ancestor \(u \) that is a candidate scapegoat, that is,
 \[
 \frac{\text{size}(u.\child)}{\text{size}(u)} > \frac{2}{3}
 \]
- Proof: By contradiction.
 - Suppose that for every node \(u \) along the path to \(p \), \(\text{size}(u.\child) \leq \frac{2}{3} \text{size}(u) \)
 - Letting \(k = \text{depth}(p) \), by induction have \(\text{size}(p) \leq \frac{2}{3}^k n \)
 - Since \(\text{size}(p) \geq 1 \), this implies \(\frac{3}{2}^k \leq n \), implies \(k \leq \log_{3/2} n \leq \log_{3/2} m \), contradiction
Scapegoat Trees
Overview - More Details

- How do we compute size(u) for each node u?
- Two methods:
 1. Maintain a separate field, u.size, for each node storing the size of u’s subtree (and update as needed)
 2. Compute it on the fly, after each insertion that requires rebalancing:
 - Walk up the search path toward the root
 - Let u be any ancestor of the inserted node. Assume we know size(u).
 - We want to compute size(u.parent):
 - Let u’ be u’s sibling. Traverse the subtree rooted at u’ and count the number of nodes.
 - Set size(u.parent) = 1 + size(u) + size(u’)
 - This may seem costly, but it can all be done within the amortized time bound!
Scapegoat Trees

Amortized Complexity

- **Theorem:** Starting with an empty tree, any sequence of k dictionary operations costs a total of $O(k \log k)$

- **Proof:** (Sketch)
 - **Find:** Cost is $O(\log n)$ always (by height bound)
 - **Delete:** In order to rebuild a tree due to deletions, at least half the entries have been deleted. A token-based analyses (recall stacks and rehashing from earlier lectures) can be applied here.
 - **Insert:** This is analyzed by a potential argument. Intuitively, after any subtree of size k is rebuilt it takes $O(k)$ insertions to force this subtree to be rebuilt again. Charge the rebuilding time against these “cheap” insertions.

- **Corollary:** The amortized complexity of the scapegoat tree with at most n nodes is $O(\log n)$
SG Tree

A data structure invented just for the programming assignment

- **Overview - An SG Tree is:**
 - An extended binary search tree that is rebalanced like a scapegoat tree
 - Updated concepts:
 - The size of an internal node is the number of external nodes in its subtree
 - The height of a node is the maximum number of edges to any external node
 - Similarities with the scapegoat tree:
 - Maintain total size n and upper bound m, where $n \leq m \leq 2n$
 - Height condition: Rebuild if tree height exceeds $\log_{3/2} m$ (\Rightarrow Tree height is $O(\log n)$)
 - Candidate scapegoat: Any node on search path such that $\frac{\text{size}(u.\text{child})}{\text{size}(u)} > \frac{2}{3}$
 - Deletion condition: If $2n < m$, rebuild the entire tree, and set $m = n$
Differences from the scapegoat tree:

- **Nodes**: Two types of nodes:
 - **External** - store data only (a city for the programming assignment)
 - **Internal** - store splitter, left, right, subtree height, and subtree size

- **Scapegoat Node**:
 - When insertion causes the tree’s height to exceed $\log_{3/2} m$, if multiple nodes satisfy the scapegoat condition, we chose the one closest to the root
 - Why? By rebuilding the largest subtree, we make the overall tree more balanced
Conventions:
- To avoid floating-point round-off errors, use integer arithmetic to test the scapegoat condition:
 \[2 \cdot \text{size}(u) < 3 \cdot \text{size}(u.\text{child}) \implies u \text{ is candidate scapegoat} \]
- When inserting a new external node, the parent’s splitter is taken from its left child
SG Tree

- More conventions:
 - When rebuilding a subtree with k external nodes:
 - If k is **even**, split the internal nodes **evenly** among the left and right subtrees
 - If k is **odd**, the left subtree gets $\lfloor k/2 \rfloor$ external nodes and the right subtree gets $\lceil k/2 \rceil$
 - **More formally:** When splitting the k-element subarray $A[i ... i + k − 1]$:
 - Set $m = \lfloor k/2 \rfloor$
 - Build **left subtree** with m keys: $A[i ... i + m − 1]$
 - The **splitter** is $A[i + m − 1]$
 - Build **right subtree** with $k − m$ keys: $A[i + m ... i + k − 1]$
 - This convention results in the **most even split and most balanced splitter value**
SG Tree

Implementation hints

- Abstract class Node and two derived classes
 - `ExternalNode` - stores just a city object
 - `InternalNode` - stores splitter (a city), left, right, size, and height

- Take advantage of virtual functions when defining node operations
 - Don’t do this:

```cpp
Node insert(Node p) {
    if (p.isExternal) {
        ExternalNode pe = (ExternalNode) p;
        /* external node processing */
    }
    else {
        InternalNode pi = (InternalNode) p;
        /* internal node processing */
    }
}
```
SG Tree
Implementation hints

- Instead, **do this:**

```java
abstract class Node {
    // …
    abstract Node insert(Key x);
}
class InternalNode extends Node {
    // …
    Node insert(Key x) { … } // insertion at internal node
}
class ExternalNode extends Node {
    // …
    Node insert(Key x) { … } // insertion at external node
}
```
SG Tree

Implementation hints

▪ Your SGTree class:
 − **Generic**? It’s up to you.
 − We don’t maintain key-value pairs. We store city objects.
 − The print command assumes that the data object has a name and (x,y) coordinates
 − We made ours generic, but the data type must support getName(), getX(), and getY()
 − Use inner classes for nodes:
 − Node, InternalNode, ExternalNode
 − Private data:

```java
Node root;
Comparator comparator; // (Optional. Given with the constructor)
Document resultsDoc; // (Needed by print command)
int n, m; // (Used by the scapegoat functions)
```
SG Tree

Implementation hints

- **insert(x):**
 - Insert the key using the standard recursive insertion algorithm
 - Some modifications needed because we have an extended tree
 - While backing out from recursion, update the size and height values for each node
 - Increment both \(n \) and \(m \)
 - If the new tree height exceeds \(\log_{3/2} m \):
 - Traverse the search path from root down until finding the first candidate scapegoat
 \[2 \cdot \text{size}(u) < 3 \cdot \text{size}(u.\text{child}) \]
 - Rebuild this subtree (Note: \(u \) must be an internal node)
 - (Be sure that your rebuilding function updates heights and sizes for all nodes)
SG Tree

Implementation hints

- delete(x):
 - Delete the key using the standard recursive deletion algorithm
 - Some modifications needed because we have an extended tree
 - While backing out from recursion, update the size and height values for each node
 - Decrement n but not m
 - If $2n < m$:
 - Rebuild the entire tree
 - Set $m = n$
Write utilities for handling size and height:
- getSize(Node p): return (p.isExternal ? 1 : p.size)
- getHeight(Node p): return (p.isExternal ? 0 : p.height)
- InternalNode.update():
 size = getSize(left) + getSize(right);
 height = 1 + max(getHeight(left), getHeight(right));

Write a debugging utility for “pretty printing” your tree
- Call this function after each major operation (insert, delete, subtree rebuilding)

Insert a boolean flag (e.g., DEBUG), which you can turn on and off for debugging
SG Tree

Implementation hints

- **Problem:**
 - My SG Tree is ordered by \((x, y)\)-coordinates. How do I delete a city given just its name?

- **Answer:**
 - This is why we have the binary-search tree (which is ordered by name)
 - Create a “bogus city” with just a name (no coordinates)
 - Find this city in your binary-search tree and save this “complete city”
 - Delete this complete city from both data structures
Supplemental

Example of a rebuild operation

\[
\begin{align*}
\text{insert}(6) & \quad 6 \\
\text{insert}(10) & \quad 10 \\
\text{insert}(12) & \quad 12 \\
\text{insert}(16) & \quad 16 \\
\text{insert}(18) & \quad 18
\end{align*}
\]

rebuild(6)

scapegoat candidates

\[
\begin{align*}
\frac{4}{2} & > \log_3 5 \\
& \approx 3.97
\end{align*}
\]
Example of SG-Tree operations
Another example of SG-Tree operations

3 \leq \log_2 4 \approx 3.42

4 > \log_2 5 \approx 3.97!!

5 \leq \log_3 10 \approx 5.68

6 > \log_3 11 \approx 5.92!!
Summary

- **Extended Binary Search Trees**
 - Data stored only at the leaves (external nodes)
 - Internal nodes are used only for locating the data

- **Scapegoat Trees**
 - Another amortized binary search tree data structure
 - Rebalancing through rebuilding subtrees
 - Unlike splay trees, height is guaranteed to be $O(\log n)$

- **SG Tree**
 - An extended-tree variant of the scapegoat tree