CMSC 420 - 0201 - Fall 2019
Lecture 12
Extended and Scapegoat Trees
Overview

- In today’s lecture, we will discuss two unrelated topics that arise in the programming assignment:
 - Extended Binary Search Trees
 - Scapegoat Trees
- We will also discuss the SG Tree, which is featured in the Programming Project, Part 1
Extended Binary Search Trees

- **Extended Binary Tree** (from Lecture 3)
 - **Internal nodes**: Have exactly 2 children
 - **External nodes**: Have 0 children

- **Basic properties**
 - Any extended binary tree with \(n \) internal nodes has \(n + 1 \) leaves
Extended Binary Search Trees

- Each external node contains an entry, a **key-value pair**, \((x, v)\)
- Each internal node contains a **splitter**, \(s\)
 - If \(x \leq s\) → Left subtree
 - If \(x > s\) → Right subtree

- Note that a key can be **both** a splitter and part of a key-value pair

![Diagram of Extended Binary Search Trees](image_url)
Extended Binary Search Trees

Why?

- **Memory locality**: We saw with B+ trees, we can store many splitters in a single node, increasing fan-out, thus decreasing tree height

- **Heterogenous data**: In some applications the data and splitters are different
 - Example: *Binary-space partition tree*
 - Data are points
 - Splitters are lines

![Binary-space partition tree diagram](image)
Extended Binary Search Trees
Differences with standard (unbalanced) binary search trees

- **find(x):**
 - Descend to the external node, as directed by internal nodes
 - If key matches - then found, else not
 - **Warning:** Matching a splitter means nothing!

- **Example:**
 - find(7) - yes
 - find(15) - no
 - find(10) - no! (even though root matches)
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- **insert(x,v):**
 - Descend to the external node. Let y be its key. If \(x = y \) – duplicate-key error
 - Create a new external node for \(x \) and internal node to split between \(x \) and \(y \)
 - Splitter \(s \) satisfies: \(\min(x, y) \leq s < \max(x, y) \)
Extended Binary Search Trees

Differences with standard (unbalanced) binary search trees

- \textbf{delete}(x):
 - Descend to the external node. Let \(y \) be its key. If \(x \neq y \) - key-not-found error
 - Replace this node and its parent with its sibling

\[\text{delete}(9) \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{tree}
\end{figure}
Scapegoat Trees
Another Amortized Dictionary Data Structure

- **Amortized cost** -
 - The total cost divided by the number of operations
 - **Splay trees** - Amortized cost $O(\log n)$ for dictionary operations, even though any single operation may take $O(n)$ time

- **Are there other efficient dictionaries in the amortized sense?** Scapegoat trees!

- **Origins:**
 - Original idea by Arne Andersson (of AA-Tree fame), 1989
 - Rediscovered by Galperin and Rivest, 1993 (gave the name “Scapegoat Tree”)

- **Resources:**
 - http://opendatastructures.org/versions/edition-0.1g/ods-python/8_Scapegoat_Trees.html
 - http://opendatastructures.org/newhtml/ods/latex/scapegoat.html
Scapegoat Trees
Another Amortized Dictionary Data Structure

- Why should we care?
 - Amortized structures are often *simpler* than worst-case efficient structures
 - The update rules for scapegoat trees can be adapted to many other search trees where *rotations cannot be applied* (e.g., spatial decomposition trees)
 - The SG Tree in the programming assignment is a variant of the scapegoat tree
Scapegoat Trees
Overview - Balance through Rebuilding

- **Insertion:**
 - Insert just as in a standard (unbalanced) binary tree
 - Monitor the depth of the inserted node after each insertion
 - If it is too high, then there must be at least one node on the search path that has poor weight balance (left and right children have very different sizes)
 - Find such a node - it’s the scapegoat! (It is given the blame for the high depth)
 - Rebuild the subtree rooted at this node so that it is perfectly balanced

- **Deletion:**
 - Delete as in a standard (unbalanced) binary tree
 - Once the number of deletions is sufficiently large relative to the entire tree size, rebuild the entire tree so it is perfectly balanced
Scapegoat Trees
Overview - Balance through Rebuilding

- How to rebuild a subtree?
 - Perform an inorder traversal of the subtree, and **copy** the \(n \) elements to a (sorted) array \(A[0 \ldots n - 1] \)
 - Take the **median** of the array as the root, and **recursively** build left and right subtrees from the two halves of the array

- **buildSubtree**\((A, i, k) \): Build subtree for \(k \)-element subarray \(A[i \ldots i + k - 1] \)
 - If \(k = 0 \), return null
 - Otherwise, let \(m = \left\lfloor \frac{k}{2} \right\rfloor \). Create new node \(p \) with median key, \(A[i + m] \)
 - \(p.left = buildSubtree(A, i, m) \)
 - \(p.right = buildSubtree(A, i+m+1, k-m-1) \)

- A subtree with \(n \) nodes can be rebuilt in \(O(n) \) time
Scapegoat Trees
Overview - Details

- A scapegoat tree stores no balance or height information with the nodes
- In addition to the tree we maintain:
 - \(n \) - the current number of nodes in the tree
 - \(m \) - an upper bound on the tree size (we maintain: \(n \leq m \leq 2n \))

- **Height condition**: never exceeds \(\log_{\frac{3}{2}} m \) \(\Rightarrow \) Tree height is \(O(\log n) \)

- **Size condition**:
 - Initially: \(n = m = 0 \)
 - After insertion: \(n++ \), \(m++ \)
 - After deletion: \(n- - \) (but do not change \(m \))
 - If \(2n < m \), rebuild the entire tree, and set \(m = n \)
Scapegoat Trees

Overview - More Details

- **find(x):**
 - Identical to any binary search time (time: $O(\log n)$)

- **delete(x):**
 - Identical to delete for an unbalanced binary tree
 - Decrement n (but do not change m)
 - If $2n < m$, rebuild the entire tree, and set $m = n$
Scapegoat Trees
Overview - More Details

- **insert(x):**
 - Same as standard binary search tree insertion, keep track of inserted node’s depth (number of edges from the root)
 - If inserted depth *exceeds* \(\log_{3/2} m \):
 - Walk back up the search path until we find the **first node** \(u \) such that
 \[
 \frac{\text{size}(u.\text{child})}{\text{size}(u)} > \frac{2}{3}
 \]
 - Here \(\text{size}(u) \) is the number of nodes in \(u \)’s subtree and \(u.\text{child} \) is \(u \)’s child on search path
 - A node on the insertion path satisfying this is called a **candidate scapegoat**
 - Rebuild the subtree rooted at \(u \)
 - Increment both \(n \) and \(m \)
Scapegoat Trees

Overview - More Details

- **insert(5):**

![Diagram of Scapegoat Trees showing the process of insert(5) and rebuild(9)]
Scapegoat Trees
Overview - More Details

- Will we always find a scapegoat node? Yes!
- Is it unique? No! (9, 12, and 13 are all candidate scapegoats)
- Lemma: If there exists a node p such that $\text{depth}(p) > \log_3^2 m$, then p has an ancestor u that is a candidate scapegoat, that is,
 \[\frac{\text{size}(u.\text{child})}{\text{size}(u)} > \frac{2}{3} \]
- Proof: By contradiction.
 - Suppose that for every node u along the path to p, $\text{size}(u.\text{child}) \leq (2/3)\text{size}(u)$
 - Letting $k = \text{depth}(p)$, by induction have $\text{size}(p) \leq (2/3)^k n$
 - Since $\text{size}(p) \geq 1$, this implies $(3/2)^k \leq n$, implies $k \leq \log_{3/2} n \leq \log_{3/2} m$, contradiction
Scapegoat Trees
Overview - More Details

- How do we compute size(u) for each node u?

- **Two methods:**
 1. Maintain a separate field, u.size, for each node storing the size of u’s subtree (and update as needed)
 2. Compute it on the fly, after each insertion that requires rebalancing:
 - Walk up the search path toward the root
 - Let u be any ancestor of the inserted node. Assume we know size(u).
 - We want to compute size(u. parent):
 - Let u' be u’s sibling. Traverse the subtree rooted at u' and count the number of nodes.
 - Set size(u. parent) = 1 + size(u) + size(u')
 - This may seem costly, but it can all be done within the amortized time bound!
Scapegoat Trees

Amortized Complexity

- **Theorem**: Starting with an empty tree, any sequence of k dictionary operations costs a total of $O(k \log k)$

- **Proof**: (Sketch)
 - **Find**: Cost is $O(\log n)$ always (by height bound)
 - **Delete**: In order to rebuild a tree due to deletions, at least half the entries have been deleted. A token-based analyses (recall stacks and rehashing from earlier lectures) can be applied here.
 - **Insert**: This is analyzed by a potential argument. Intuitively, after any subtree of size k is rebuilt it takes $O(k)$ insertions to force this subtree to be rebuilt again. Charge the rebuilding time against these “cheap” insertions.

- **Corollary**: The amortized complexity of the scapegoat tree with at most n nodes is $O(\log n)$
SG Tree
A data structure invented just for the programming assignment

- Overview - An **SG Tree** is:
 - An extended binary search tree that is rebalanced like a **scapegoat tree**
 - Updated concepts:
 - The *size* of an internal node is the number of external nodes in its subtree
 - The *height* of a node is the maximum number of edges to any external node
 - Similarities with the scapegoat tree:
 - Maintain total size n and upper bound m, where $n \leq m \leq 2n$
 - Height condition: Rebuild if tree height exceeds $\log_{3/2} m$ (\Rightarrow Tree height is $O(\log n)$)
 - Candidate scapegoat: Any node on search path such that $\frac{\text{size(u.child)}}{\text{size(u)}} > \frac{2}{3}$
 - Deletion condition: If $2n < m$, rebuild the entire tree, and set $m = n$
SG Tree

- **Differences from the scapegoat tree:**
 - **Nodes:** Two types of nodes:
 - **External** - store data only (a city for the programming assignment)
 - **Internal** - store splitter, left, right, subtree height, and subtree size
 - **Scapegoat Node:**
 - When insertion causes the tree’s height to exceed $\log_{3/2} m$, if multiple nodes satisfy the scapegoat condition, we chose the one **closest to the root**
 - Why? By rebuilding the **largest subtree**, we make the overall tree **more balanced**
SG Tree

- Conventions:
 - To avoid floating-point round-off errors, use integer arithmetic to test the scapegoat condition:
 \[2 \cdot \text{size}(u) < 3 \cdot \text{size}(u.\text{child}) \implies u \text{ is candidate scapegoat} \]
 - When inserting a new external node, the parent’s splitter is taken from its left child
More conventions:

- When rebuilding a subtree with \(k \) external nodes:
 - If \(k \) is even, split the internal nodes evenly among the left and right subtrees
 - If \(k \) is odd, the left subtree gets \(\lfloor k/2 \rfloor \) external nodes and the right subtree gets \(\lceil k/2 \rceil \)

 More formally: When splitting the \(k \)-element subarray \(A[i \ldots i + k - 1] \):
 - Set \(m = \lceil k/2 \rceil \)
 - Build left subtree with \(m \) keys: \(A[i \ldots i + m - 1] \)
 - The splitter is \(A[i + m - 1] \)
 - Build right subtree with \(k - m \) keys: \(A[i + m \ldots i + k - 1] \)

- This convention results in the most even split and most balanced splitter value
SG Tree

Implementation hints

- Abstract class Node and two derived classes
 - `ExternalNode` - stores just a city object
 - `InternalNode` - stores splitter (a city), left, right, size, and height
- Take advantage of **virtual functions** when defining node operations
 - Don’t do this:

```cpp
Node insert(Node p) {
    if (p.isExternal) {
        ExternalNode pe = (ExternalNode) p;
        /* external node processing */
    } else {
        InternalNode pi = (InternalNode) p;
        /* internal node processing */
    }
}
```


SG Tree

Implementation hints

- Instead, do this:

```java
abstract class Node {
    // …
    abstract Node insert(Key x);
}
class InternalNode extends Node {
    // …
    Node insert(Key x) { … } // insertion at internal node
}
class ExternalNode extends Node {
    // …
    Node insert(Key x) { … } // insertion at external node
}
```
SG Tree

Implementation hints

- Your SGTree class:
 - **Generic?** It’s up to you.
 - We don’t maintain key-value pairs. We store **city objects**.
 - The **print command** assumes that the data object has a **name** and (x,y) **coordinates**
 - We made ours **generic**, but the data type must support `getName()`, `getX()`, and `getY()`
 - Use **inner classes** for nodes:
 - Node, InternalNode, ExternalNode
 - **Private data**:

    ```java
    Node root;
    Comparator comparator; (Optional. Given with the constructor)
    Document resultsDoc; (Needed by print command)
    int n, m; (Used by the scapegoat functions)
    ```
SG Tree

Implementation hints

- **insert(x):**
 - Insert the key using the standard recursive insertion algorithm
 - Some modifications needed because we have an extended tree
 - While backing out from recursion, update the size and height values for each node
 - Increment both n and m
 - If the new tree height exceeds $\log_{3/2} m$:
 - Traverse the search path from root down until finding the first candidate scapegoat
 \[2 \cdot \text{size}(u) < 3 \cdot \text{size}(u.\text{child}) \]
 - Rebuild this subtree (Note: u must be an internal node)
 - (Be sure that your rebuilding function updates heights and sizes for all nodes)
SG Tree

Implementation hints

- **delete(x):**
 - Delete the key using the **standard recursive deletion** algorithm
 - Some modifications needed because we have an extended tree
 - While backing out from recursion, **update the size and height** values for each node
 - **Decrement** n but not m
 - If $2n < m$:
 - **Rebuild** the entire tree
 - Set $m = n$
Sg Tree

Implementation hints

- Write utilities for handling size and height:
 - getSize(Node p): return (p.isExternal ? 1 : p.size)
 - getHeight(Node p): return (p.isExternal ? 0 : p.height)
 - InternalNode.update():
 size = getSize(left) + getSize(right);
 height = 1 + max(getHeight(left), getHeight(right));

- Write a debugging utility for “pretty printing” your tree
 - Call this function after each major operation (insert, delete, subtree rebuilding)

- Insert a boolean flag (e.g., DEBUG), which you can turn on and off for debugging
SG Tree
Implementation hints

- **Problem:**
 - My SG Tree is ordered by \((x, y)\)-coordinates. How do I delete a city given just its name?

- **Answer:**
 - This is why we have the binary-search tree (which is ordered by name)
 - Create a “bogus city” with just a name (no coordinates)
 - Find this city in your binary-search tree and save this “complete city”
 - Delete this complete city from both data structures
Summary

- Extended Binary Search Trees
 - Data stored only at the leaves (external nodes)
 - Internal nodes are used only for locating the data

- Scapegoat Trees
 - Another amortized binary search tree data structure
 - Rebalancing through rebuilding subtrees
 - Unlike splay trees, height is guaranteed to be $O(\log n)$

- SG Tree
 - An extended-tree variant of the scapegoat tree