Point Quadtree and kd-Trees
Overview

- So far, we have studying data structure for 1-dimensional search problems
- Many data structure problems involve data in multi-dimensional spaces:
 - Spatial databases, automated cartography (maps), and navigation
 - Computer graphics
 - Robotics and motion planning
 - Solid modeling and industrial engineering
 - Particle and fluid dynamics
 - Molecular dynamics in computational biology
 - Machine learning
 - Image processing, pattern recognition, computer vision
Geometric Queries

Examples

- **Nearest-neighbor searching** - Find the closest point to a given query point q
- **Range searching** - Report/Count the points lying within a query region R
- **Point location** - Find the region of a subdivision (map) containing a query point q
- **Intersection searching** - Find all the objects that overlap a given query object R
- **Ray shooting** - Find the first (if any) object hit by shooting a ray from a point p
Geometric Queries

Similarities and differences

- Multi-dimensional data structures borrow many concepts from 1-dimensional search structure
 - Tree-based structures based on hierarchical partitions
 - Maintaining balance O(log n) height
 - Use key/splitters to navigate the search space

- Many differences as well
 - There is no natural total order in geometric space.
 - What does it mean to say one point is smaller than another?
Geometric Data

Point Representation

- A point in a d-dimensional space is represented by a \textit{d-vector} of reals:

 \[p = (p_1, p_2, \ldots, p_d) \]

- In Java, this could be represented by a \textit{d-element array}

 \[
 \text{float}[][\text{p}] = \text{new float}[\text{d}];
 \]

- While in linear algebra, indexing is from 1 \ldots d, in Java indexing is from 0 \ldots d \text{ – 1}

- A set of \(n \) points can be represented as a \textit{2-dimensional array}:

 \[
 \text{float}[][][\text{P}] = \text{new float}[\text{n}][\text{d}];
 \]
A better approach is to encapsulate points in a class structure.

```java
public class Point {
    private float[] coord; // coordinate storage

    public Point(int dim) { /* construct a zero point */ }
    public int getDim() { return coord.length; }

    public float get(int i) { return coord[i]; }
    public void set(int i, float x) { coord[i] = x; }

    public boolean equals(Point other) { /* compare with another point */ }
    public String toString() { /* convert to string */ }
}
```
Point Quadtree

A Natural Generalization of Binary Search Trees

- How do we generalize a 1-dimensional tree to d-dimensional space?

- **Partition tree:**
 - Each node is associated with a region of space (e.g., a rectangle), its cell
 - Each internal node contains a splitter, which subdivides space into smaller regions
 - Data may be stored in the nodes (as the splitters) or in external nodes (as in extended binary search trees)

- **Point Quadtree:**
 - Each node stores a point (both data and splitter)
 - 2-dimensions: Horizontal and vertical lines through point subdivide cell into 4 quadrants
 - d-dimensions: d axis-parallel hyperplanes passing through the point subdivide space into 2^d (generalized) orthants
 - Each node has 2^d (possibly null) children
Point Quadtrees
A Natural Generalization of Binary Search Trees

- In 2D, quadrants are labeled NW, NE, SW, and SE
 - Example: (35,40), (50,10), (60,75), (80,65), (85,15), (5,45), (25,35), (90,5)

- To locate a point, we descend from the root, visiting the appropriate child
Point \textit{kd}-Tree

\textbf{A Binary Partition Tree}

\begin{itemize}
 \item The point quadtree works fine in low-dimensional space, but does not scale well to high dimensional space. For example, in $d = 20$ space, each node has a fanout of $2^d \approx 1,048,576$
 \item \textbf{Idea:} Let’s just split \textbf{one dimension at a time}
 \item \textbf{Point \textit{kd}-tree:}
 \begin{itemize}
 \item Each node stores a \textbf{point} (both data and splitter)
 \item And an index i, $0 \leq i \leq d - 1$, the \textbf{cutting dimension}
 \item For any point $x = (x_0, \ldots, x_{d-1})$:
 \begin{itemize}
 \item If $x_i < p_i$, x goes in the \textbf{left subtree}
 \item If $x_i \geq p_i$, x goes in the \textbf{right subtree}
 \end{itemize}
 \item Cutting dimension varies by level (e.g., $p.child.cutDim = (p.cutDim+1)\%dim$)
 \end{itemize}
\end{itemize}
Point \textit{kd}-Tree

A Binary Partition Tree

- Example: (35,40), (50,10), (60,75), (80,65), (85,15), (5,45), (25,35), (90,5)
- Cutting dimension \textit{alternates} between x and y
Point kd-Tree

Node structure

class KDNode {
 Point point; // splitting point
 int cutDim; // cutting dimension
 KDNode left; // children
 KDNode right;

 KDNode(Point point, int cutDim) {
 this.point = point;
 this.cutDim = cutDim;
 left = right = null;
 }

 boolean inLeftSubtree(Point x) {
 return x.get(cutDim) < point.get(cutDim);
 }
}
Point kd-tree

Point insertion

- To insert a point, descend the tree to find the leaf cell containing the point
- Create a new cell and assign its cutting dimension

```java
KDNode insert(Point x, KDNode p, int cutDim) {
    if (p == null) { // fell out of tree
        p = new KDNode(x, cutDim); // create new leaf
    } else if (p.point.equals(x)) {
        throw Exception("duplicate"); // duplicate data point!
    } else if (p.inLeftSubtree(x)) {
        p.left = insert(x, p.left, (p.cutDim + 1) % x.getDim());
    } else { // insert into right
        p.right = insert(x, p.right, (p.cutDim + 1) % x.getDim());
    }
    return p;
}
```
Point kd-Tree

Point insertion

- **Insert(50,90):**

![Diagram of point kd-Tree insertion](image)
Deletion is more complicated - Need a s node

How to choose the replacement?
 - Can’t just take the inorder successor (inorder doesn’t make geometric sense)
 - Depends on the current cutting dimension \(i \)
 - Want the point of the right subtree with the minimum \(i \) coordinate \(p[i] \)

Utility: Select the point with the smaller \(i \)th coordinate

```java
Point minAlongDim(Point p1, Point p2, int i) { // return smaller point on dim i
  if (p2 == null || p1[i] <= p2[i])
    return p1;
  else
    return p2;
}
```
Point kd-tree

Utility for finding replacement nodes

- **Utility**: Find the point that minimizes ith coordinate in subtree p
 - if (p.cutDim == i):
 - The subtrees are ordered by the ith coordinate
 - Look recursively in p's left subtree, if it exists
 - If not, take p.point
 - if (p.cutDim != i):
 - The subtrees are ordered arbitrarily with respect to l
 - Compute the minima from p's left and right subtrees recursively
 - Use findMin to select the overall minimum from left-min, right-min, and p.point
Point \textit{kd-tree}

Utility for finding replacement nodes

- **Utility:** Find the point that minimizes \textit{i}th coordinate in subtree \textit{p}

```java
Point findMin(KDNode p, int i) { // get min point along dim i
    if (p == null) { // fell out of tree?
        return null;
    }
    if (p.cutDim == i) { // cutting dimension matches i?
        if (p.left == null) // no left child?
            return p.point; // use this point
        else
            return findMin(p.left, i); // get min from left subtree
    } else { // it may be in either side
        Point q = minAlongDim(p.point, findMin(p.left, i), i);
        return minAlongDim(q, findMin(p.right, i), i);
    }
}
```
Point kd-tree

Utility for finding replacement nodes

- Example: Find minimum along x
 - If cut dim = x: Try left child (or p itself)
 - If cut dim = y: Try both children
Point kd-tree

Point deletion

- **Overview:** Delete x from subtree p
 - if (p == null):
 - Fell out of the tree - **Error: attempt to delete nonexistent point!**
 - else:
 - If both of p’s children are null - Simply **unlink** p (return null)
 - If p’s right child exists:
 - Invoke `findMin(p.right, p.cutDim)` to compute replacement node
 - Copy its contents to p
 - Recursively delete the replacement node from p.right
 - Else:
 - **Tricky!**
Point \(kd\)-tree

Point deletion

- **Overview:** Delete \(x\) from subtree \(p\), where \(p\) has a left child but no right child:
 - In the 1D case, we just **unlinked** \(p\)
 - But this has the effect of promoting \(p\)'s child **up a level**
 - The cutting dimensions **no longer cycle** from parent to child. (Do we care? Suppose we do)
 - How about picking the **maximum point in \(p\)’s left subtree**?
 - Our tie-breaking rule assumed that points in the left subtree have coordinates **strictly smaller** than the splitter
 - This will cause problems if there are **duplicate coordinates** in \(p\)’s left subtree
 - **Final answer** (**very sneaky**)!
 - Compute the **minimum from \(p\)’s left subtree** as replacement (But it’s on the **wrong side**)!
 - Make the left subtree the **new right subtree**. (Amazingly, this works!)
KDNode delete(Point x, KDNode p) {
 if (p == null) { // fell out of tree?
 throw Exception("point does not exist");
 } else if (p.point.equals(x)) { // found it
 if (p.right != null) { // take replacement from right
 p.point = findMin(p.right, p.cutDim);
 p.right = delete(p.point, p.right);
 } else if (p.left != null) { // take replacement from left
 p.point = findMin(p.left, p.cutDim);
 p.right = delete(p.point, p.left);
 p.left = null; // left subtree is now empty
 } else { // deleted point in leaf
 p = null; // remove this leaf
 }
 } else if (p.inLeftSubtree(x)) { // delete from left subtree
 p.left = delete(x, p.left);
 } else { // delete from right subtree
 p.right = delete(x, p.right);
 }
 return p;
}
Point kd-tree

Point deletion - Example
Point kd-tree

Analysis

- Analogous to unbalanced binary search trees
 - Storage space linear in n, the number of points
 - All dictionary operations (insert, delete, find) take time proportional to tree’s height
 - **Theorem**: If n points are inserted in random order, the expected height of the kd-tree is $O(\log n)$

- I’d conjecture that deletion suffers from the same systematic bias, which would lead to heights of \sqrt{n} after long sequences of random insertions and deletions, but I know of no results from the literature
Point kd-tree

Other Queries

- Nearest Neighbor Query
 - Given a kd-tree and a query point \(q \), compute the closest point in the kd-tree to \(q \)
 - We assume that distances are measured using the Euclidean metric:
 \[
 \text{dist}(p, q) = \sqrt{(p_1 - q_1)^2 + \cdots + (p_d - q_d)^2}
 \]
 - **Goal:** Answer queries in \(O(\log n) \) time, but this will **not be possible** with a kd-tree
Point kd-tree

Other Queries

- Nearest Neighbor Query
 - To be continued
Summary

- **Geometric Search**
 - Point representation

- **Point Quadtree**

- **Point kd-Trees**
 - Node representation
 - Insertion
 - Deletion
 - FindMin utility
 - Sneaky trick to compute replacement nodes
 - Analysis: $O(\log n)$ time assuming random insertions

- **Nearest Neighbor Queries**