Previously, we introduced the \textbf{kd-tree}, a spatial binary partition tree:

- Stores a set of points in \textit{d-dimensional real space}, where each point \textit{p} is represented as a \textit{d}-element Java vector \textit{p[0,...,d-1]}
- Each node stores a point \textit{p} and a cutting dimension \textit{i}, where \(0 \leq i \leq d - 1\)
- The left subtree contains points \textit{x} such that \(x[i] < p[i]\) and the right contains points such that \(x[i] \geq p[i]\)
- Cutting dimension \textbf{varies} from node to node (e.g., cycles from 0 through \(d - 1\), but other strategies are possible)
- What other queries can we answer?
Overview

Queries

- **Orthogonal range query:**
 - Given a point set P stored in a kd-tree, a query consists of a d-dimensional axis parallel rectangle R
 - **Range counting query:** How many points of P lie within R?
 - **Range reporting query:** Report all the points of P that lie within R. (Java: Return an iterator for the set $P \cap R$)

- **Nearest-neighbor query:**
 - Given a point set P stored in a kd-tree, a query consists of a point q
 - **Nearest-distance query:** What is the distance to q’s closest point in P
 - **Nearest-neighbor query:** Report the point that is closest to q
 - **k-th Nearest-neighbor query:** Report the k closest points of P to q
Overview

Queries

- **Orthogonal range queries**
 - Given a medical database. Each patient associated with a vector of biomedical statistics (weight, height, blood pressure, ...)
 - Want to **count** the number of patients whose weight, height, BP, etc. are within a given range of values
 - This is **range counting query**

![Diagram of orthogonal range queries](image)
Overview

Queries

- Nearest-neighbor queries
 - In a large database of documents, each document is encoded as a vector describing document properties (e.g., trigrams: number of occurrences of triples of characters)
 - Given a sample document q, we want to find similar documents in the database
 - This is a nearest-neighbor query
Orthogonal Range Queries

A Rectangle Class

- \(d\)-dimensional axis-aligned (hyper-)rectangles are useful geometric objects
- **Rectangle class:**
 - Defined by two \(d\)-dimensional points, low and high
 - The rectangle consists of the points \(q\), such that \(\text{low}[i] \leq q[i] \leq \text{high}[i]\), for \(0 \leq i \leq d - 1\)
Orthogonal Range Queries

A Rectangle Class

- **Some useful functions:**
 - `r.contains(Point q)`: true if `r` contains point `q`
 - `r.contains(Rectangle c)`: true if `r` contains rectangle `c`
 - Test `r.low[i] \leq c.low[i]` and `c.high[i] \leq r.high[i]`, for all `i`
 - `r.isDisjointFrom(Rectangle c)`: true if `r` has no overlap with rectangle `c`
 - Test `r.high[i] < c.low[i]` or `r.low[i] > c.high[i]`, for any `i`
 - *(Not the same as `!r.contains(c)`)*
Orthogonal Range Queries

A Rectangle Class

- **More useful functions:**
 - `r.distanceFrom(Point q)`
 - Min distance from q, or 0 if q lies within r

- **Useful for kd-tree cells:**
 - Given a rectangle r, a point x lying within r, and a cutting dimension `cd`
 - Portion of r left of (below) `x[cd]`
 - Portion of r right of (above) `x[cd]`
 - Change of just one coordinate of low or high
Orthogonal Range Queries

A Rectangle Class

- Basic signature of the Rectangle class:

```java
public class Rectangle {
    Point low;                                  // lower left corner
    Point high;                                 // upper right corner

    public Rectangle(Point low, Point high)     // constructor
        public boolean contains(Point q)            // do we contain q?
        public boolean contains(Rectangle c)        // do we contain rectangle c?
        public boolean isDisjointFrom(Rectangle c)  // disjoint from rectangle c?
        public float distanceTo(Point q)            // min distance to point q
        public Rectangle leftPart(int cd, Point x)  // left part from x
        public Rectangle rightPart(int cd, Point x) // right part from x
}
```
Orthogonal Range Queries

Answering Queries

- **Intuition:**
 - Each node of the kd-tree is associated with a **cell**, a **rectangular region** of space based on the intersection of the cuts of its ancestors.
 - As a starting point, assume that there is a **bounding box**, the root’s cell.
 - Use the **cell-range relationship** to avoid visiting subtrees whenever possible.

![Diagram](image)
Orthogonal Range Queries

Answering Queries

- **Cases:**
 - **Cell disjoint from range:** No overlap with range. Return 0
 - **Cell contained in range:** All the points in this subtree lie in the range. Count them all. (Assume each node p stores its subtree size, p.size)
 - **Cell partially overlaps range:**
 - Check whether the node’s point lies in the range - if so count it
 - Recurse on both children

![Diagrams](image-url)
Orthogonal Range Queries

Answering Queries

```java
int rangeCount(Rectangle r, KDNode p, Rectangle cell) {
    if (p == null) return 0;            // empty subtree
    else if (r.isDisjointFrom(cell))    // no overlap?
        return 0;
    else if (r.contains(cell))          // range contains our entire cell?
        return p.size;                  // …include all points in the count
    else {                              // partial overlap?
        int count = 0;
        if (r.contains(p.point))        // check this point
            count++;
        // apply recursively to children
        count += rangeCount(r, p.left, cell.leftPart(p.cutDim, p.point));
        count += rangeCount(r, p.right, cell.rightPart(p.cutDim, p.point));
        return count;
    }
}
```
Orthogonal Range Queries

Example
Orthogonal Range Queries

Analysis

- **Theorem:** Given a balanced kd-tree with \(n \) points in 2D, range counting queries can be answered in \(O(\sqrt{n}) \) time.

- **Terminology:**
 - A node \(p \) is **stabbed** by a line if the line intersects the interior of \(p \)'s cell
 - Observe that if a node is not stabbed by any of the four lines bounding the range, we will never recurse into this node

- **Lemma:** Given a balanced kd-tree with \(n \) points in 2D, the number of nodes stabbed by any axis-parallel line is \(O(\sqrt{n}) \).

- The above theorem follows directly from this.
Orthogonal Range Queries

Analysis

- Useful observation:
 - In 2D, if an axis-parallel line stabs a node u, then it stabs at most 2 of u’s grandchildren
 - Therefore, the number of nodes stabbed at level 2^i is at most 2^i
Orthogonal Range Queries

Analysis

- **Lemma**: Given a balanced kd-tree with \(n \) points in 2D, the number of nodes stabbed by any axis-parallel line is \(O(\sqrt{n}) \).

- **Proof**:
 - Let \(h \approx \lg n \) be the tree **height**. Let \(l \) be an **axis parallel line**
 - If \(l \) stabs a node \(u \), then it stabs at most 2 of \(u \)'s **grandchildren**
 - For every two levels of the tree, the number of stabbed nodes at most **doubles**
 - Total number of stabbed nodes is roughly:
 \[
 \sum_{i=0}^{h/2} 2^i \approx 2^{h/2} = (2^h)^{1/2} \approx (2^{\lg n})^{1/2} = (n)^{1/2} = \sqrt{n}
 \]

- **Proof of Theorem**:
 - Each of the 4 sides of the range stabs \(O(\sqrt{n}) \) nodes. Total time \(\sim O(4\sqrt{n}) = O(\sqrt{n}) \)
Nearest-Neighbor Searching

- Nearest Neighbors
 - Given a kd-tree and a query point q, compute the closest point in the kd-tree to q
 - We assume that distances are measured using the Euclidean metric:
 $$\text{dist}(p, q) = \sqrt{(p_1 - q_1)^2 + \cdots + (p_d - q_d)^2}$$
 - Unfortunately, worst case is $O(n)$, which happens if almost all points at same distance. In practice, much better
Nearest-Neighbor Searching

- **Overview:**
 - For *simplicity*, we will compute *just the distance* to the nearest neighbor
 - Computing the *actual point* is a *simple extension*
 - Search operates *recursively*, starting from the root
 - Keep track of the *minimum distance* to the query seen so far - bestDist
 - Minimize the number of nodes visited:
 - Visit the subtree (left or right) that is *closer* to the query point *first*
 - Don’t visit the other child if it *cannot* possibly contribute a *closer point*
Nearest-Neighbor Searching

Answering Queries

- float nearNeighbor(Point q, Node p, Rectangle cell, float bestDist)
 - If p is null - return bestDist (empty subtree, no change in best)
 - Else:
 - Compute dist(q, p.point) and update bestDist if this is smaller
 - Compute child cells, leftPart and rightPart
 - Determine which child is closer to the query point (which side is q w.r.t. splitter)
 - Recursively visit the closer child - Update bestDist
 - Visit the farther child only if it is sufficiently close - Update bestDist
 - Return bestDist
Nearest-Neighbor Searching

Answering Queries

- float nearNeighbor(Point q, Node p, Rectangle cell, float bestDist)
Nearest-Neighbor Searching

```java
float nearNeighbor(Point q, KDNode p, Rectangle cell, float bestDist) {
    if (p != null) {
        float thisDist = q.distanceTo(p.point);  // distance to p's point
        bestDist = Math.min(thisDist, bestDist);  // keep smaller distance

        int cd = p.cutDim;  // cutting dimension
        Rectangle leftCell = cell.leftPart(cd, p.point);  // left child's cell
        Rectangle rightCell = cell.rightPart(cd, p.point);  // right child's cell

        if (q[cd] < p.point[cd]) {  // q is closer to left
            bestDist = nearNeighbor(q, p.left, leftCell, bestDist);
            if (rightCell.distanceTo(q) < bestDist) {  // worth visiting right?
                bestDist = nearNeighbor(q, p.right, rightCell, bestDist);
            }
        } else {  // q is closer to right
            /* ... left-right symmetrical ... */
        }
    }
    return bestDist;
}
```
Nearest-Neighbor Searching

Example

![Diagram showing nearest-neighbor searching with a query point \(q \) and a tree structure with distances to points such as (35, 90), (10, 75), (20, 50), (25, 10), etc. The best distance is highlighted along with the closest so far.]
Nearest-Neighbor Searching

Example
Nearest-Neighbor Searching

Example
Nearest-Neighbor Searching

Example
Summary

- Answering Queries with kd-trees
 - Principles:
 - Use recursion to visit subtrees
 - Maintain intermediate results
 - Avoid visiting subtrees whenever possible
 - Orthogonal range (counting) queries
 - Nearest-neighbor queries