Harris Corner Detection

Mohammad Nayeem Teli
Corner detection

Corners contain more edges than lines.

A point on a line is hard to match.
Corners contain more edges than lines.

A corner is easier
Edge Detectors Tend to Fail at Corners
Finding Corners

Intuition:

• Right at corner, gradient is ill defined.
• Near corner, gradient has two different values.
Background
Background
Sum of Square Differences (SSD)

Intuition:

• Uses SSD to detect any fluctuation in the gradient of the image.

• Gradient should have significant change in two directions.
Smoothing
Gradient Images \((I_x, I_y)\)
Finding Corners

\[E(u, v) = \sum_{x,y} w(x, y)[I(x + u, y + v) - I(x, y)]^2 \]

\(E \) is the difference between the original and the moved window
\(u \) is the window's displacement in the \(x \) direction
\(v \) is the window's displacement in the \(y \) direction
\(w(x, y) \) is the window at position \((x, y)\). This acts like a mask.
\(I \) is the intensity of the image at a position \((x, y)\)
\(I(x + u, y + v) \) is the intensity of the moved window
Finding Corners

\[E(u, v) = \sum_{x,y} w(x, y)[I(x + u, y + v) - I(x, y)]^2 \]

maximize \(E \)

\[\implies \maximize \sum_{x,y} [I(x + u, y + v) - I(x, y)]^2 \]

Taylor series expansion:

\[I(x + u, y + v) \approx I(x, y) + u \frac{\partial}{\partial x} I(x, y) + v \frac{\partial}{\partial y} I(x, y) \]

\[I(x + u, y + v) \approx I(x, y) + u I_x + v I_y \]

\[E(u, v) \approx \sum_{x,y} w(x, y)[I(x, y) + u I_x + v I_y - I(x, y)]^2 \]
Finding Corners

\[E(u, v) = \sum_{x,y} w(x, y)[I(x + u, y + v) - I(x, y)]^2 \]

\[E(u, v) \approx \sum_{x,y} w(x, y)[I(x, y) + uI_x + vI_y - I(x, y)]^2 \]

\[= \sum_{x,y} w(x, y)[uI_x + vI_y]^2 \]

\[= \sum_{x,y} w(x, y)[u^2I_x^2 + 2uvI_xI_y + v^2I_y^2] \]

\[[u^2I_x^2 + 2uvI_xI_y + v^2I_y^2] = [u \ v] \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} [u \ v] \]
Finding Corners

\[[u^2 I_x^2 + 2uv I_x I_y + v^2 I_y^2] = [u \ v] \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} [u \ v] \]

\[E(u, v) \approx \sum_{x,y} w(x, y)[u^2 I_x^2 + 2uv I_x I_y + v^2 I_y^2] \]

\[E(u, v) \approx [u \ v] \left(\sum w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \right) [u \ v] \]

\[E(u, v) \approx [u \ v] M [u \ v] \]

\[M = \sum w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

windowing function - computing a weighted sum
Gradient plots - I_x vs. I_y
Gradient plots - I_x vs. I_y
Gradient plots - I_x vs. I_y

- $\lambda_1 \approx \lambda_2$ small
- $\lambda_1 \approx \lambda_2$ large
- λ_1 large; λ_2 small
Score for each window

\[E(u, v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix} \]

\[M = \sum w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} \]

Eigen values of the matrix, \(M \), can help determine the suitability of a window

Score, \(R = \det(M) - k(\text{trace}(M))^2 \)

\[\det(M) = \lambda_1 \lambda_2 \]

\[\text{trace}(M) = \lambda_1 + \lambda_2 \]

\(k \) is an empirically determined constant; \(k = 0.04 - 0.06 \)
Corner detection

− If λ_1 and λ_2 are small, means we are in a flat region
− If $\lambda_1 > > \lambda_2$ significant change in one direction, it is an edge
− If $\lambda_1 \approx \lambda_2$, and both are large, it is a corner

Score, $R = det(M) - k(trace(M))^2$

$det(M) = \lambda_1 \lambda_2$

$trace(M) = \lambda_1 + \lambda_2$

k is an empirically determined constant; $k = 0.04 - 0.06$
Harris corner detector algorithm

- Compute magnitude of the gradient everywhere in x and y directions I_x, I_y

- Compute I_x^2, I_y^2, I_xI_y

- Convolve these three images with a Gaussian window, w. Find M for each pixel,

$$M = \sum w(x, y) \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix}$$

- Compute detector response, R at each pixel.

$$R = \text{det}(M) - k(\text{trace}(M))^2$$

- find local maxima above some threshold on R. Compute nonmax suppression.