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2D homography (projective transformation)

Definition
:

A 2D homography is an invertible mapping h from P2 to 
itself  such that three points x1,x2,x3 lie on the same 
line if and only  if h(x1),h(x2),h(x3) do. 

Theorem: 

A mapping h: P2→P2 is a homography if and only if there  
exist a non-singular 3x3 matrix H such that for any point 
in P2  represented by a vector x it is true that h(x)=Hx 

Definition: Homography

Homography=projective 
transformation=projectivity=collineation

Line  
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g
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General homography

• Note: homographies are not restricted to P2 

• General definition: 
A homography is a non-singular, line 
preserving,  projective mapping h: Pn → Pn. 
It is represented by a square (n + 1)-dim 
matrix 
with (n + 1)2-1 DOF 

• Now back to the 2D case… 
• Mapping between planes
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Homographies in 
Computer vision

What happens to the P-matrix, if Z is assumed 
zero?

T(x, y,1) = x ∝ PX

H

Rotating/translating camera, planar 
world 

H
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Homographies in 
Computer vision

Rotating camera, arbitrary 
world

⎝ ⎠
What happens to the P-matrix, if t is assumed 
zero?

∝ KRK −1 x' = Hx'(x, y,1)T   = x ∝ PX = K (r r r t )



To unwarp (rectify) an image 
• solve for homography H given p and p’ 
• solve equations of the form:  wp’ = Hp 

– linear in unknowns:  w and coefficients of H 
– H is defined up to an arbitrary scale factor 
– how many points are necessary to solve for H?

p
p’



Solving for homographies



Solving for homographies

A h 0

Linear least squares 
• Since h is only defined up to scale, solve for unit vector ĥ 
• Minimize 

2n × 9 9 2n

• Solution: ĥ = eigenvector of ATA with smallest eigenvalue 
• Works with 4 or more points



Inhomogeneous solution
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Since h can only be computed up to scale, 
impose  constraint pick hj=1, e.g. h9=1, and 
solve for 8-vector

Can be solved using linear least-
squares 

However, if h9=0 this approach 
fails  Also poor results if h9 close 
to zero  Therefore, not 
recommended



Feature matching

?

descriptors for left image feature points descriptors for right image feature points



SIFT features
• Example

(a) 233x189 image 
(b) 832 DOG extrema 
(c) 729 left after peak 
      value threshold 
(d) 536 left after testing 
      ratio of principle 
      curvatures 



Strategies to match images robustly

(a)Working with individual features: For each feature point,  
find most similar point in other image (SIFT distance) 
Reject ambiguous matches where there are too many similar points 

(b)Working with all the features: Given some good feature  
matches, look for possible homographies relating the two  
images 
Reject homographies that d o n ’ t  have many feature matches.
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(a) Feature-space outlier  rejection
• Le t ’ s  not match all features, but only these that  

have “similar enough”  matches? 
• How can we do it? 
– SSD(patch1,patch2) < threshold 
– How to set threshold? 

Not so easy.



Feature-space outlier rejection
• A better way [Lowe, 1999]: 
– 1-NN: SSD of the closest match 
– 2-NN: SSD of the second-closest match 
– Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN 
– That is, is our best match so much better than the rest?



RAndom SAmple Consensus

Select one match, count inliers



RANSAC for estimating homography
RANSAC loop: 
Select four feature pairs (at random)  
Compute homography H (exact) 
Compute inliers where | | p i ’ ,  H pi|| < ε 
Keep largest set of inliers 
Re-compute least-squares H estimate using all of  
the inliers


