
Homography

Homography

Homography

2D homography (projective transformation)

Definition
:

A 2D homography is an invertible mapping h from P2 to
itself such that three points x1,x2,x3 lie on the same
line if and only if h(x1),h(x2),h(x3) do.

Theorem:

A mapping h: P2→P2 is a homography if and only if there
exist a non-singular 3x3 matrix H such that for any point
in P2 represented by a vector x it is true that h(x)=Hx

Definition: Homography

Homography=projective
transformation=projectivity=collineation

Line
preservin
g

!4

[
x2
y2
z2

] =
h00 h01 h02

h10 h11 h12

h20 h21 h22
[

x1
y1
z1

]

General homography

• Note: homographies are not restricted to P2

• General definition:
A homography is a non-singular, line
preserving, projective mapping h: Pn → Pn.
It is represented by a square (n + 1)-dim
matrix
with (n + 1)2-1 DOF

• Now back to the 2D case…
• Mapping between planes

!5

10

⎜ ⎟

⎝ ⎠

⎛ X ⎞
= H ⎜Y ⎟

⎜1 ⎟

Homographies in
Computer vision

What happens to the P-matrix, if Z is assumed
zero?

T(x, y,1) = x ∝ PX

H

Rotating/translating camera, planar
world

H

H

1 2 3

Y

⎜ ⎟
1
⎜ Z ⎟
⎜ ⎟
⎜ ⎟⎛ X ⎞

Homographies in
Computer vision

Rotating camera, arbitrary
world

⎝ ⎠
What happens to the P-matrix, if t is assumed
zero?

∝ KRK −1 x' = Hx'(x, y,1)T = x ∝ PX = K (r r r t)

To unwarp (rectify) an image
• solve for homography H given p and p’
• solve equations of the form: wp’ = Hp

– linear in unknowns: w and coefficients of H
– H is defined up to an arbitrary scale factor
– how many points are necessary to solve for H?

p
p’

Solving for homographies

Solving for homographies

A h 0

Linear least squares
• Since h is only defined up to scale, solve for unit vector ĥ
• Minimize

2n × 9 9 2n

• Solution: ĥ = eigenvector of ATA with smallest eigenvalue
• Works with 4 or more points

Inhomogeneous solution

!11

⎡

i i ⎦ ⎝ i i ⎠i ii i i i⎣ i i⎢x w ' y w ' w w '

0 0 0 − xiwi ' − yiwi ' − wiwi ' xi yi ' yi yi '⎤~ ⎛− wi yi '⎞

0 0 0 x x ' y x '⎥h = ⎜ w x ' ⎟

Since h can only be computed up to scale,
impose constraint pick hj=1, e.g. h9=1, and
solve for 8-vector

Can be solved using linear least-
squares

However, if h9=0 this approach
fails Also poor results if h9 close
to zero Therefore, not
recommended

Feature matching

?

descriptors for left image feature points descriptors for right image feature points

SIFT features
• Example

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak
 value threshold
(d) 536 left after testing
 ratio of principle
 curvatures

Strategies to match images robustly

(a)Working with individual features: For each feature point,
find most similar point in other image (SIFT distance)
Reject ambiguous matches where there are too many similar points

(b)Working with all the features: Given some good feature
matches, look for possible homographies relating the two
images
Reject homographies that d o n ’ t have many feature matches.

2

(a) Feature-space outlier rejection
• Le t ’ s not match all features, but only these that

have “similar enough” matches?
• How can we do it?
– SSD(patch1,patch2) < threshold
– How to set threshold?

Not so easy.

Feature-space outlier rejection
• A better way [Lowe, 1999]:
– 1-NN: SSD of the closest match
– 2-NN: SSD of the second-closest match
– Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
– That is, is our best match so much better than the rest?

RAndom SAmple Consensus

Select one match, count inliers

RANSAC for estimating homography
RANSAC loop:
Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where | | p i ’ , H pi|| < ε
Keep largest set of inliers
Re-compute least-squares H estimate using all of
the inliers

