Homography
Homography
Homography
2D homography (projective transformation)

Definition:
A 2D *homography* is an invertible mapping h from P^2 to itself such that three points x_1, x_2, x_3 lie on the same line if and only if $h(x_1), h(x_2), h(x_3)$ do.

Theorem:
A mapping $h: P^2 \rightarrow P^2$ is a homography if and only if there exist a non-singular 3×3 matrix H such that for any point in P^2 represented by a vector x it is true that $h(x) = Hx$.

Definition: Homography

$$
\begin{bmatrix}
 x_2 \\
 y_2 \\
 z_2
\end{bmatrix} =
\begin{bmatrix}
 h_{00} & h_{01} & h_{02} \\
 h_{10} & h_{11} & h_{12} \\
 h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 y_1 \\
 z_1
\end{bmatrix}
$$

Homography=projective transformation=projectivity=collineation
General homography

• Note: homographies are not restricted to P^2
• General definition:
 A homography is a non-singular, line preserving, projective mapping $h: P^n \rightarrow P^n$.
 It is represented by a square $(n + 1)$-dim matrix
 with $(n + 1)^2-1$ DOF

• Now back to the 2D case..
• Mapping between planes
Homographies in Computer vision

Rotating/translated camera, planar world

\[\begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = x \propto P X = K [r_1 r_2 r_3] \begin{pmatrix} X \\ Y \\ 0 \end{pmatrix} = H \begin{pmatrix} X \\ Y \\ 1 \end{pmatrix} \]

What happens to the P-matrix, if Z is assumed zero?
Homographies in Computer vision

Rotating camera, arbitrary world

\[
\begin{bmatrix}
X \\
Y \\
Z \\
1
\end{bmatrix}
= \alpha \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
= K \begin{bmatrix}
r_1 & r_2 & t_1 \\
r_2 & r_3 & t_2 \\
r_3 & r_4 & t_3
\end{bmatrix} \begin{bmatrix}
x' \\
y'
\end{bmatrix}
\]

What happens to the P-matrix, if t is assumed zero?

\[
\alpha K R K^{-1} x' = H x'
\]
To unwarp (rectify) an image

- solve for homography H given p and p'
- solve equations of the form: $wp' = Hp$
 - linear in unknowns: w and coefficients of H
 - H is defined up to an arbitrary scale factor
 - how many points are necessary to solve for H?
Solving for homographies

\[
\begin{bmatrix}
 x'_i \\
 y'_i \\
 1
\end{bmatrix} = \begin{bmatrix}
 h_{00} & h_{01} & h_{02} \\
 h_{10} & h_{11} & h_{12} \\
 h_{20} & h_{21} & h_{22}
\end{bmatrix} \begin{bmatrix}
 x_i \\
 y_i \\
 1
\end{bmatrix}
\]

\[
x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
x'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}
\]

\[
y'_i(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}
\]

\[
\begin{bmatrix}
 x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\
 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i
\end{bmatrix} \begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22}
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]
Solving for homographies

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 x_1 & -x'_1 y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & y'_1 x_1 & y'_1 y_1 & y'_1 \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_n x_n & -x'_n y_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & y'_n x_n & y'_n y_n & y'_n \\
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22} \\
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 0 \\
 \vdots \\
 0 \\
\end{bmatrix}
\]

\[
A_{2n \times 9} \quad \quad h_{9} \quad \quad 0_{2n}
\]

Linear least squares

- Since \(h \) is only defined up to scale, solve for unit vector \(\hat{h} \)
- Minimize \(\| A \hat{h} \|^2 \)
 \[
 \| A \hat{h} \|^2 = (A \hat{h})^T A \hat{h} = \hat{h}^T A^T A \hat{h}
 \]
- Solution: \(\hat{h} = \) eigenvector of \(A^T A \) with smallest eigenvalue
- Works with 4 or more points
Inhomogeneous solution

Since h can only be computed up to scale, impose constraint pick $h_j=1$, e.g. $h_9=1$, and solve for 8-vector

\[
\begin{bmatrix}
0 & 0 & 0 & -x_i w'_i & -y_i w'_i & -w_i w'_i & x_i y'_i & y_i y'_i \\
x_i w'_i & y_i w'_i & w_i w'_i & 0 & 0 & 0 & x_i y'_i & y_i y'_i \\
\end{bmatrix} \sim \begin{bmatrix}
-w_i y'_i \\
\end{bmatrix}
\]

Can be solved using linear least-squares

However, if $h_9=0$ this approach fails Also poor results if h_9 close to zero Therefore, not recommended
Feature matching

descriptors for left image feature points

descriptors for right image feature points
SIFT features

- Example

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak value threshold
(d) 536 left after testing ratio of principle curvatures
Strategies to match images robustly

(a) Working with individual features: For each feature point, find most similar point in other image (SIFT distance)
Reject ambiguous matches where there are too many similar points

(b) Working with all the features: Given some good feature matches, look for possible homographies relating the two images
Reject homographies that don’t have many feature matches.
(a) Feature-space outlier rejection

- Let’s not match all features, but only those that have “similar enough” matches?
- How can we do it?
 - SSD(patch1,patch2) < threshold
 - How to set threshold? Not so easy.
Feature-space outlier rejection

- A better way [Lowe, 1999]:
 - 1-NN: SSD of the closest match
 - 2-NN: SSD of the second-closest match
 - Look at how much better 1-NN is than 2-NN, e.g. 1-NN/2-NN
 - That is, is our best match so much better than the rest?
RAndom SAmple Consensus

Select one match, count inliers
RANSAC for estimating homography

RANSAC loop:
Select four feature pairs (at random)
Compute homography H (exact)
Compute inliers where $\|p_i', H p_i\| < \epsilon$
Keep largest set of inliers
Re-compute least-squares H estimate using all of the inliers