
Final project overview

Important dates

• Initial code release: Thursday 11/21

• Benchmark suite #1: Tuesday 12/3

• Benchmark suite #2: Tuesday 12/10

• Final due date: 10:30AM, Saturday 12/14

Objectives
• 10 minute TOTAL time limit to compile all programs

• 10 minute TOTAL time limit to run all programs

• Run-times computed as average of 3 runs

• Full credit: pass all test cases and achieve a 20% speed-
up over base-line

• Measurements will be taken on GRACE system

• Full credit solutions will be entered in compiler tournament

Programs

• Benchmark programs will be batch I/O programs: read
some input, compute something, produce a result and/or
write some output

• I/O primitives: read-char, write-char

• Standard library: source-level definitions for all standard
library functions will be given

Baseline

• Given code will be complete implementation of compiler

• Garbage-collector will be provided by benchmark #2

• Standard library: source-level definitions for all standard
library functions

Plan

• Remaining lectures will be devoted to topics relevant to
final project

Opportunities for
optimizations

• Smarter compilation of pattern matching

• Intern more constant data to reduce memory allocation

• Better memory representations (e.g. strings are wasteful)

• Lower-level implementation of standard library

• Better instruction selection

• Source-level rewriting: constant propagation, function inlining, etc.

• ASM-level rewriting: optimize stack operations, make better use of
registers, etc.

Smarter compilation of
pattern matching

Can you compile maximum
into maximum*?

Smarter compilation of
pattern matching

Sky is the limit…
Submitted to ML’08

Compiling Pattern Matching to good Decision Trees

Luc Maranget
INRIA

Luc.marangetinria.fr

Abstract

We address the issue of compiling ML pattern matching to efficient
decisions trees. Traditionally, compilation to decision trees is op-
timized by (1) implementing decision trees as dags with maximal
sharing; (2) guiding a simple compiler with heuristics. We first de-
sign new heuristics that are inspired by necessity, a notion from
lazy pattern matching that we rephrase in terms of decision tree se-
mantics. Thereby, we simplify previous semantical frameworks and
demonstrate a direct connection between necessity and decision
tree runtime efficiency. We complete our study by experiments,
showing that optimized compilation to decision trees is competi-
tive. We also suggest some heuristics precisely.

Categories and Subject Descriptors D 3. 3 [Programming Lan-

guages]: Language Constructs and Features—Patterns

General Terms Design, Performance, Sequentiality.

Keywords Match Compilers, Decision Trees, Heuristics.

1. Introduction

Pattern matching certainly is one of the key features of functional
languages. Pattern matching is a powerful high-level construct that
allows programming by directly following case analysis. Cases to
match are expressed as “algebraic” patterns, i.e. terms. Definitions
by pattern matching are roughly similar to rewriting rules: a series
of rules is defined; and execution is performed on subject values
by finding rules who left-hand side is matched by the value. With
respect to plain term rewriting, the semantics of ML simplifies
two issues. First, matches are always attempted at the root of the
subject value. And, second, there are no ambiguities as regards the
matched rule.

All ML compilers translate the high level pattern matching
definitions into low-level tests, organized in matching automata.
Matching automata fall in two categories: decision trees and back-

tracking automata. Compilation to backtracking automata has been
introduced by Augustsson (1985). The primary advantage of the
technique is a linear guarantee for code size. However, backtrack-
ing automata may backtrack and, at the occasion, they may scan
subterms more than once. As a result, backtracking automata are
potentially inefficient at runtime. The optimizing compiler of Le
Fessant and Maranget (2001) somehow alleviates this problem.

[Copyright notice will appear here once ’preprint’ option is removed.]

In this paper we study compilation to decision tree, whose
primary advantage is never testing a given subterm of the subject
value more than once (and whose primary drawback is potential
code size explosion). Our aim is to refine naive compilation to
decision trees, and to compare the output of such an optimizing
compiler with optimized backtracking automata.

Compilation to decision can be very sensitive to the testing
order of subject value subterms. The situation can be explained
by the example of an human programmer attempting to translate a
ML program into a lower-level language without pattern matching.
Let f be the following function1 defined on triples of booleans :
l e t f x y z = match x,y,z with

| _,F,T -> 1

| F,T,_ -> 2

| _,_,F -> 3

| _,_,T -> 4

Where T and F stand for true and false respectively.
Apart from preserving ML semantics (e.g f F T F should eval-

uate to 2), the game has one rule: never test x, y or z more than
once. A natural idea is to test x first, i.e to write:
l e t f x y z = i f x then f_TXX y z f_FXX y z

Where functions f_TXX and f_FXX are still defined by pattern
matching:

l e t f_TXX y z =

match y,z with

| F,T -> 1

| _,F -> 3

| _,T -> 4

l e t f_FXX y z =

match y,z with

| F,T -> 1

| T,_ -> 2

| _,F -> 3

| _,T -> 4

Compilation goes on by considering y and z, resulting in the fol-
lowing low-level f1:
l e t f1 x y z =

i f x then

i f y then

i f z then 4 e l s e 3

e l s e

i f z then 1 e l s e 3

e l s e

i f y then 2

e l s e

i f z then 1 e l s e 3

We can do a little better, by elimination of the common subexpres-
sion if z then 1 else 3 as advised by many and described pre-
cisely by Pettersson (1992).

But we can do even better, by first testing y, and x first when y

is true, resulting in the second low-level f2:
l e t f2 x y z =

1 We use OCaml syntax.

Submitted to ML’08 1 2008/6/16

ar
X

iv
:1

10
6.

25
78

v1
 [

cs
.P

L]
 1

4
Ju

n
20

11
Extensible Pattern Matching in an Extensible Language

Sam Tobin-Hochstadt

PLT @ Northeastern University
samth@ccs.neu.edu

Abstract. Pattern matching is a widely used technique in functional languages,
especially those in the ML and Haskell traditions, where it is at the core of the
semantics. In languages in the Lisp tradition, in contrast, pattern matching it typ-
ically provided by libraries built with macros. We present match, a sophisticated
pattern matcher for Racket, implemented as language extension. using macros.
The system supports novel and widely-useful pattern-matching forms, and is it-
self extensible. The extensibility of match is implemented via a general technique
for creating extensible language extensions.

1 Extending Pattern Matching

The following Racket1 [12] program finds the magnitude of a complex number, repre-
sented in either Cartesian or polar form as a 3-element list, using the first element as a
type tag:

(define (magnitude n)
(cond [(eq? (first n) ’cart)

(sqrt (+ (sqr (second n)) (sqr (third n))))]
[(eq? (first n) ’polar)
(second n)]))

While this program accomplishes the desired purpose, it’s far from obviously correct,
and commits the program to the list-based representation. Additionally, it unnecessarily
repeats accesses to the list structure making up the representation. Finally, if the input
is ’(cart 7), it produces a hard-to-decipher error from the third function.

In contrast, the same program written using pattern matching is far simpler:

(define (magnitude n)
(match n
[(list ’cart x y) (sqrt (+ (sqr x) (sqr y)))]
[(list ’polar r theta) r]))

The new program is shorter, more perspicuous, does not repeat computation, and pro-
duces better error messages. For this reason, pattern matching has become a ubiquitous
tool in functional programming, especially for languages in the Haskell and ML fam-
ilies. Unfortunately, pattern matching is less ubiquitous in functional languages in the

1 Racket is the new name of PLT Scheme.

Optimizing Pattern Matching

Fabrice Le Fessant, Luc Maranget
INRIA Roquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

(Email: {Fabrice.Le fessant, Luc.Maranget}@inria.fr)

ABSTRACT
We present improvements to the backtracking technique of
pattern-matching compilation. Several optimizations are in-
troduced, such as commutation of patterns, use of exhaus-
tiveness information, and control flow optimization through
the use of labeled static exceptions and context information.
These optimizations have been integrated in the Objective-
Caml compiler. They have shown good results in increasing
the speed of pattern-matching intensive programs, without
increasing final code size.

1. INTRODUCTION
Pattern-matching is a key feature of functional languages.

It allows to discriminate between the values of a deeply
structured type, binding subparts of the value to variables
at the same time. ML users now routinely rely on their com-
piler for such a task; they write complicated, nested, pat-
terns. And indeed, transforming high-level pattern-matching
into elementary tests is a compiler job. Moreover, because
it considers the matching as a whole and that it knows some
intimate details of runtime issues such as the representation
of values, compiler code is often better than human code,
both as regards compactness and efficiency.

There are two approaches to pattern-matching compila-
tion, the underlying model being either decision trees [5] or
backtracking automata [1]. Using decision trees, one pro-
duces a priori faster code (because each position in a term
is tested at most once), while using backtracking automata,
one produces a priori less code (because patterns never get
copied, hence never get compiled more than once). The price
paid in each case is losing the advantage given by the other
technique.

This paper mostly focuses on producing faster code in the
backtracking framework. Examining the code generated by
the Objective-Caml compiler [11], which basically used the
Augustsson’s original algorithm, on frequent pieces of code,
such as a list-merge function, or on large examples [14], we
found that the backtracking scheme could still be improved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

Our optimizations improve the produced backtracking au-
tomaton by grouping elementary tests more often, removing
useless tests and avoiding the blind backtracking behavior
of previous schemes. To do so, the compiler uses new in-
formation and outputs a new construct. New information
include incompatibility between patterns, exhaustiveness in-
formation and contextual information at the time of back-
tracking. As to the new construct, previous schemes used a
lone “exit” construct whose effect is to jump to the nearest
enclosing “trap-handler” ; we enrich both exits and traps-
handlers with labels, resulting in finer control of execution
flow.

Our optimizations also apply to or-patterns, a convenient
feature to group clauses with identical actions. Unsharing
of actions is avoided by using our labelled exit construct. As
or-patterns may contain variables, the exit construct is also
extended to take arguments.

All our optimizations are now implemented in the latest
version of the Objective-Caml compiler, whose language of
accepted patterns has been extended by allowing variables
in or-patterns.

The structure of this article is the following: we first in-
troduce some theoretical basics on pattern-matching in sec-
tion 2 and describe the compilation scheme to backtracking
automata in section 3. Then, we briefly introduce our op-
timizations and or-pattern compilation in an intuitive way
in sections 4 and 5, while section 6 is a formalization of our
complete compilation scheme. Finally, some experimental
results are shown in section 7, and a comparison with other
approaches is discussed in section 8.

2. BASICS
In this section, we introduce some notations and defini-

tions. Most of the material here is folklore, save, perhaps,
or-patterns.

2.1 Patterns and Values
ML is a typed language, where new types of values can be

introduced using type definitions such as:

type t = Nil | One of int | Cons of int * t

This definition introduces a type t, with three constructors
that build values of type t. These three constructors define
the complete signature of type t. Every constructor has
an arity, i.e. the number of arguments it takes. Here arity
of Nil is zero, while the arities of One and Cons are one
and two respectively. A constructor of arity zero is called

Better instruction selection

Can you compute
this without a jump?

Source-level rewriting

Source-level rewriting

ASM-level rewriting

ASM-level rewriting

Intern more

My advice
• Start with the low-hanging fruit

• Implement some library functions in C or assembly

• Special case code generation

• Do some simple program transformations

• Test and measure at each step

• Go from there

