

Supervised Classification with the Perceptron

CMSC 470

Marine Carpuat

Slides credit: Hal Daume III & Piyush Rai

Last time

- Word senses distinguish different meanings of same word
- Sense inventories
- Annotation issues and annotator agreement (Kappa)
- Definition of Word Sense Disambiguation Task
- An unsupervised approach: Lesk algorithm
- Supervised classification:
 - Train vs. test data
 - The most frequent class baseline
- Evaluation metrics: accuracy, precision, recall

WSD as **Supervised** Classification

Evaluation Metrics for Classification

How are annotated examples used in supervised learning?

- Supervised learning = requires examples annotated with correct prediction
- Used in 2 ways:
 - To find good values for the model (hyper)parameters (training data)
 - To evaluate how good the resulting classifier is (test data)
- How do we know how good a classifier is?
 - Compare classifier predictions with human annotation
 - On held out test examples
 - Evaluation metrics: accuracy, precision, recall

Quantifying Errors in a Classification Task: The 2-by-2 contingency table (per class)

	correct	not correct
selected	tp	fp
not selected	fn	tn

Quantifying Errors in a Classification Task: Precision and Recall

	correct	not correct
selected	tp	fp
not selected	fn	tn

Precision: % of selected items that are correct **Recall**: % of correct items that are selected

Q: When are Precision/Recall more informative than accuracy?

A combined measure: F

• A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{2 \frac{1}{R} + (1 - 2) \frac{1}{R}} = \frac{(b^2 + 1)PR}{b^2 P + R} \quad \text{With } \beta^2 = \frac{1}{\alpha} - 1$$

- People usually use balanced F1 measure
 - i.e., with $\beta = 1$ (that is, $\alpha = \frac{1}{2}$): $F = \frac{2PR}{P+R}$

The Perceptron

A simple Supervised Classifier

WSD as **Supervised** Classification

Formalizing classification

Task definition

- Given inputs:
 - an example x

often x is a D-dimensional vector of binary or real values

a fixed set of classes Y

 $Y = \{y_1, y_2, ..., y_J\}$

e.g. word senses from WordNet

• Output: a predicted class $y \in Y$

Classifier definition A function $f: x \rightarrow f(x) = y$

Many different types of functions/classifiers can be defined

• We'll talk about perceptron, logistic regression, neural networks.

Example: Word Sense Disambiguation for "bass"

• Y = {-1,+1} since there are 2 senses in our inventory

WordNet Sense	Spanish Translation	Roget Category	Target Word in Context
bass ⁴	lubina	FISH/INSECT	fish as Pacific salmon and striped bass and
bass ⁴	lubina	FISH/INSECT	produce filets of smoked bass or sturgeon
bass ⁷	bajo	MUSIC	exciting jazz bass player since Ray Brown
bass ⁷	bajo	MUSIC	play bass because he doesn't have to solo

- Many different definitions of x are possible
 - E.g., vector of word frequencies for words that co-occur in a window of +/- k words around "bass"
 - Instead of frequency, we could use binary values, or tf.idf, or PPMI, etc.
 - Instead of window, we could use the entire sentence
 - Instead of/in addition to words, we could use POS tags

• ...

Perception Test Algorithm for Binary Classification: Predict class -1 or +1 for example x

f(x) = sign(w.x + b)

Algorithm 6 PERCEPTRONTEST($w_0, w_1, \ldots, w_D, b, \hat{x}$)

 $a \leftarrow \sum_{d=1}^{D} w_d \hat{x}_d + b$ // compute activation for the test example $\frac{1}{2} \operatorname{return SIGN}(a)$

Perceptron Training Algorithm: Find good values for (w,b) given training data D

The Perceptron update rule: geometric interpretation

Machine Learning Vocabulary

x is often called the feature vector

- its elements are defined (by us, the model designers) to capture properties or features of the input that are expected to correlate with predictions
- w and b are the parameters of the classifier
 - they are needed to fully define the classification function f(x) = y
 - their values are found by the training algorithm using training data D

MaxIter is a hyperparameter

- controls when training stops
- MaxIter impacts the nature of function f indirectly

All of the above affect the performance of the final classifier!

Standard Perceptron: predict based on final parameters

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter) $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias * for iter = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if Q: end for 10: 11: end for ^{12:} return w_0, w_1, \ldots, w_D, b

Predict based on final + intermediate parameters

• The voted perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)}\operatorname{sign}\left(\boldsymbol{w}^{(k)}\cdot\hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

• The averaged perceptron

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)} \right) \right)$$

• Require keeping track of "survival time" of weight vectors

$$c^{(1)}, \ldots, c^{(K)}$$

How would you modify this algorithm for voted perceptron?

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter) $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias * for iter = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if Q: end for 10: 11: end for ^{12:} return w_0, w_1, \ldots, w_D, b

How would you modify this algorithm for averaged perceptron?

Algorithm 5 PERCEPTRONTRAIN(D, MaxIter) $w_d \leftarrow o$, for all $d = 1 \dots D$ // initialize weights $2: b \leftarrow 0$ // initialize bias * for iter = 1 ... MaxIter do for all $(x,y) \in \mathbf{D}$ do 4: $a \leftarrow \sum_{d=1}^{D} w_d x_d + b$ // compute activation for this example 5: if $ya \leq o$ then 6: $w_d \leftarrow w_d + yx_d$, for all $d = 1 \dots D$ // update weights 7: $b \leftarrow b + y$ // update bias 8: end if Q: end for 10: 11: end for ^{12:} return w_0, w_1, \ldots, w_D, b

Averaged perceptron decision rule

$$\hat{y} = \operatorname{sign}\left(\sum_{k=1}^{K} c^{(k)} \left(\boldsymbol{w}^{(k)} \cdot \hat{\boldsymbol{x}} + b^{(k)}\right)\right)$$

can be rewritten as

$$\hat{y} = \operatorname{sign}\left(\left(\sum_{k=1}^{K} c^{(k)} \boldsymbol{w}^{(k)}\right) \cdot \hat{\boldsymbol{x}} + \sum_{k=1}^{K} c^{(k)} \boldsymbol{b}^{(k)}\right)$$

An Efficient Algorithm for Averaged Perceptron Training

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(D, MaxIter)

$w \leftarrow \langle o, o, \dots o \rangle , b \leftarrow o$	// initialize weights and bias	
$\mathbf{u} \leftarrow \langle o, o, \ldots o \rangle$, $\boldsymbol{\beta} \leftarrow o$	// initialize cached weights and bias	
$_{3:} C \leftarrow 1$	// initialize example counter to one	
<pre># for iter = 1 MaxIter do</pre>		
for all $(x,y) \in \mathbf{D}$ do		
if $y(\boldsymbol{w} \cdot \boldsymbol{x} + \boldsymbol{b}) \leq o$ then		
$w \leftarrow w + y x$	// update weights	
s: $b \leftarrow b + y$	// update bias	
$u \leftarrow u + y c x$	// update cached weights	
$\beta \leftarrow \beta + y c$	// update cached bias	
n: end if		
$C \leftarrow C + 1$	// increment counter regardless of update	
13: end for		
14: end for		
15: return $w - \frac{1}{c} u, b - \frac{1}{c} \beta$	// return averaged weights and bias	

Perceptron for binary classification

 Classifier = a hyperplane that separates positive from negative examples

 $\hat{y} = sign(w.x + b)$

- Perceptron training
 - Finds such a hyperplane
 - If training examples are separable

Convergence of Perceptron

Theorem (Block & Novikoff, 1962)

If the training data $D = \{(x_1, y_1), ..., (x_N, y_N)\}$ is **linearly separable** with margin γ by a unit norm hyperplane w_* ($||w_*||=1$) with b = 0,

Then **perceptron training converges after** $\frac{R^2}{\gamma^2}$ **errors** during training (assuming (||x|| < R) for all x). More Machine Learning vocabulary: overfitting/underfitting/generalization

Training error is not sufficient

- We care about **generalization** to new examples
- A classifier can classify training data perfectly, yet classify new examples incorrectly
 - Because training examples are only a sample of data distribution
 - a feature might correlate with class by coincidence
 - Because training examples could be noisy
 - e.g., accident in labeling

Overfitting

- Consider a model θ and its:
 - Error rate over training data $error_{train}(\theta)$
 - True error rate over all data $error_{true}(\theta)$
- We say h overfits the training data if $error_{train}(\theta) < error_{true}(\theta)$

Evaluating on test data

- Problem: we don't know $error_{true}(\theta)$!
- Solution:
 - we set aside a test set
 - some examples that will be used for evaluation
 - we don't look at them during training!
 - after learning a classifier θ , we calculate $error_{test}(\theta)$

Overfitting

- Another way of putting it
- A classifier θ is said to overfit the training data, if there are other parameters θ' , such that
 - θ has a smaller error than θ' on the training data
 - but θ has larger error on the test data than θ' .

Underfitting/Overfitting

- Underfitting
 - Learning algorithm had the opportunity to learn more from training data, but didn't
- Overfitting
 - Learning algorithm paid too much attention to idiosyncracies of the training data; the resulting classifier doesn't generalize

Back to the Perceptron

- Practical strategies to improve generalization for the perceptron
 - Voting/Averaging
 - Randomize order of training data
 - Use a development test set to find good hyperparameter values
 - E.g., early stopping is a good strategy to avoid overfitting

The Perceptron What you should know

- What is the underlying function used to make predictions
- Perceptron test algorithm
- Perceptron training algorithm
- How to improve perceptron training with the averaged perceptron
- Fundamental Machine Learning Concepts:
 - train vs. test data; parameter; hyperparameter; generalization; overfitting; underfitting.
- How to define features