

From Logistic Regression to Neural Networks

CMSC 470

Marine Carpuat

Logistic Regression What you should know

How to make a prediction with logistic regression classifier How to train a logistic regression classifier

Machine learning concepts: Loss function Gradient Descent Algorithm function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns θ # where: L is the loss function

- f is a function parameterized by θ #
- x is the set of training inputs $x^{(1)}, x^{(2)}, ..., x^{(n)}$ #
- y is the set of training outputs (labels) $y^{(1)}$, $y^{(2)}$,..., $y^{(n)}$ #

 $\theta \leftarrow 0$

repeat til done # see caption

For each training tuple $(x^{(i)}, y^{(i)})$ (in random order)

2. $g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$ 3. $\theta \leftarrow \theta - \eta g$

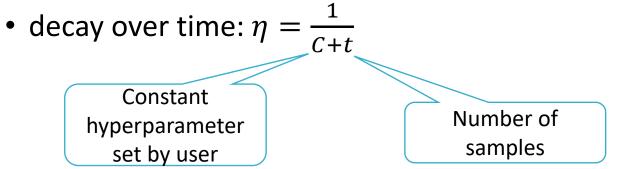
1. Optional (for reporting): # How are we doing on this tuple? Compute $\hat{y}^{(i)} = f(x^{(i)}; \theta)$ # What is our estimated output \hat{y} ? Compute the loss $L(\hat{y}^{(i)}, y^{(i)})$ # How far off is $\hat{y}^{(i)}$ from the true output $y^{(i)}$? # How should we move θ to maximize loss? # Go the other way instead

return θ

The stochastic gradient descent algorithm. Step 1 (computing the loss) is used Figure 5.5 to report how well we are doing on the current tuple. The algorithm can terminate when it converges (or when the gradient $< \varepsilon$), or when progress halts (for example when the loss starts going up on a held-out set).

SGD hyperparameter: the learning rate

- The hyperparameter η that control the size of the step down the gradient is called the learning rate
- If η is too large, training might not converge; if η is too small, training might be very slow.
- How to set the learning rate? Common strategies:



• Use held-out test set, increase learning rate when likelihood increases

Multiclass Logistic Regression

Formalizing classification

Task definition

- Given inputs:
 - an example x

often x is a D-dimensional vector of binary or real values

a fixed set of classes Y

 $Y = \{y_1, y_2, ..., y_j\}$

e.g. word senses from WordNet

• *Output*: a predicted class *y* ∈ *Y*

Classifier definition

A function $g: x \rightarrow g(x) = y$

Many different types of functions/classifiers can be defined

• We'll talk about perceptron, logistic regression, neural networks.

So far we've only worked with binary classification problems i.e. J = 2

A multiclass logistic regression classifier

aka multinomial logistic regression, softmax logistic regression, maximum entropy (or maxent) classifier

Goal: predict probability P(y=c|x), where c is one of k classes in set C

The softmax function

- A generalization of the sigmoid
- Input: a vector z of dimensionality k

 $z = [z_1, z_2, \dots, z_k]$

• Output: a vector of dimensionality k

$$\operatorname{softmax}(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{z_{j}}} \quad 1 \le i \le k$$

$$\operatorname{softmax}(z) = \left[\frac{e^{z_{1}}}{\sum_{i=1}^{k} e^{z_{i}}}, \frac{e^{z_{2}}}{\sum_{i=1}^{k} e^{z_{i}}}, \dots, \frac{e^{z_{k}}}{\sum_{i=1}^{k} e^{z_{i}}}\right] \quad \text{Looks like a probability distribution!}$$

The softmax function Example

Thus for example given a vector:

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

the result softmax(z) is

$\left[0.055, 0.090, 0.0067, 0.10, 0.74, 0.010\right]$

All values are in [0,1] and sum up to 1: they can be interpreted as probabilities!

A multiclass logistic regression classifier

aka multinomial logistic regression, softmax logistic regression, maximum entropy (or maxent) classifier

Goal: predict probability P(y=c|x), where c is one of k classes in set C

Model definition:

$$p(y = c | x) = \frac{e^{w_c \cdot x + b_c}}{\sum_{j=1}^k e^{w_j \cdot x + b_j}}$$
We now have one weight vector at one bias PER CLA

ne

nd

١SS

Features in multiclass logistic regression

- Features are a function of the input example and of a candidate output class c
- $f_i(c, x)$ represents feature i for a particular class c for a given example x

Example: sentiment analysis with 3 classes {positive (+), negative (-), neutral (0)}

- Starting from the features for binary classification
- We create one copy of each feature per class

Var	Definition	Wt
$f_1(0,x)$	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	-4.5
$f_1(+,x)$	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	2.6
$f_1(-,x)$	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1.3

Learning in Multiclass Logistic Regression

• Loss function for a single example

$$L_{CE}(\hat{y}, y) = -\sum_{k=1}^{K} 1\{y = k\} \log p(y = k | x)$$

$$1\{\} \text{ is an indicator function that evaluates to 1 if the condition in the brackets is true, and to 0 otherwise}$$

Learning in Multiclass Logistic Regression

• Loss function for a single example

$$L_{CE}(\hat{y}, y) = -\sum_{k=1}^{K} 1\{y=k\} \log p(y=k|x)$$
$$= -\sum_{k=1}^{K} 1\{y=k\} \log \frac{e^{w_k \cdot x+b_k}}{\sum_{j=1}^{K} e^{w_j \cdot x+b_j}}$$

Learning in Multiclass Logistic Regression

 ∂

$$L_{CE}(\hat{y}, y) = -\sum_{k=1}^{K} 1\{y=k\} \log p(y=k|x)$$
$$= -\sum_{k=1}^{K} 1\{y=k\} \log \frac{e^{w_k \cdot x+b_k}}{\sum_{j=1}^{K} e^{w_j \cdot x+b_j}}$$

$$\frac{\partial L_{CE}}{\partial w_k} = -(1\{y=k\} - p(y=k|x))x_k$$
$$= -\left(1\{y=k\} - \frac{e^{w_k \cdot x + b_k}}{\sum_{j=1}^{K} e^{w_j \cdot x + b_j}}\right)x_k$$

Logistic Regression What you should know

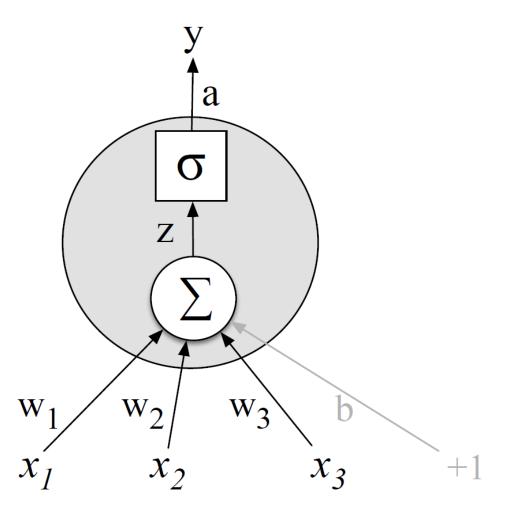
How to make a prediction with logistic regression classifier How to train a logistic regression classifier **For both binary and multiclass problems**

Machine learning concepts: Loss function Gradient Descent Algorithm Learning rate

Neural Networks

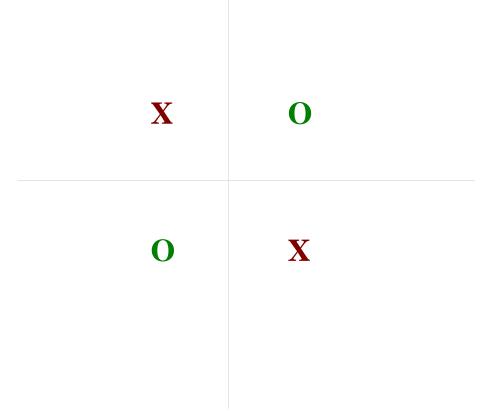
From logistic regression to a neural network unit

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}$$



Limitation of perceptron

 can only find linear separations between positive and negative examples

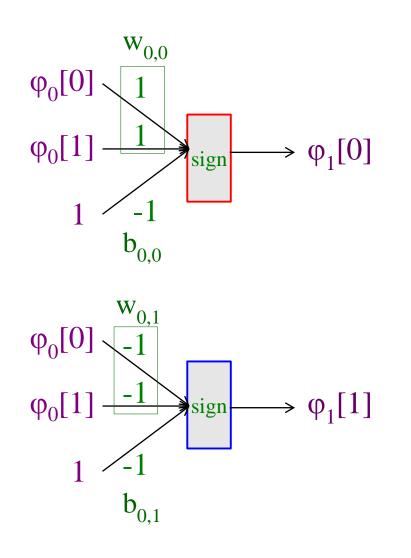


Example: binary classification with a neural network

Create two classifiers

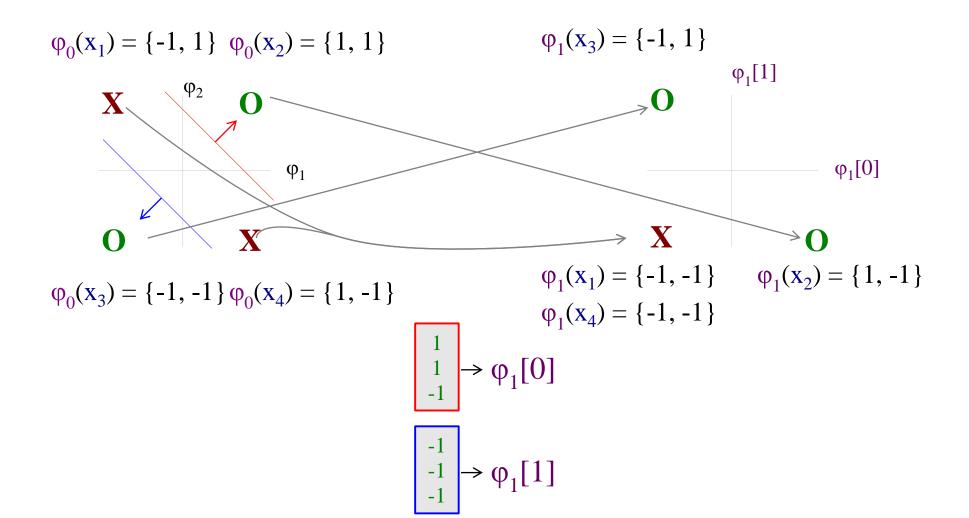
 $\varphi_{0}(\mathbf{x}_{1}) = \{-1, 1\} \quad \varphi_{0}(\mathbf{x}_{2}) = \{1, 1\}$ $\mathbf{X} \quad \varphi_{0}[1] \quad \mathbf{O} \quad \varphi_{0}[0]$ $\mathbf{O} \quad \mathbf{X}$

 $\varphi_0(\mathbf{x}_3) = \{-1, -1\} \ \varphi_0(\mathbf{x}_4) = \{1, -1\}$

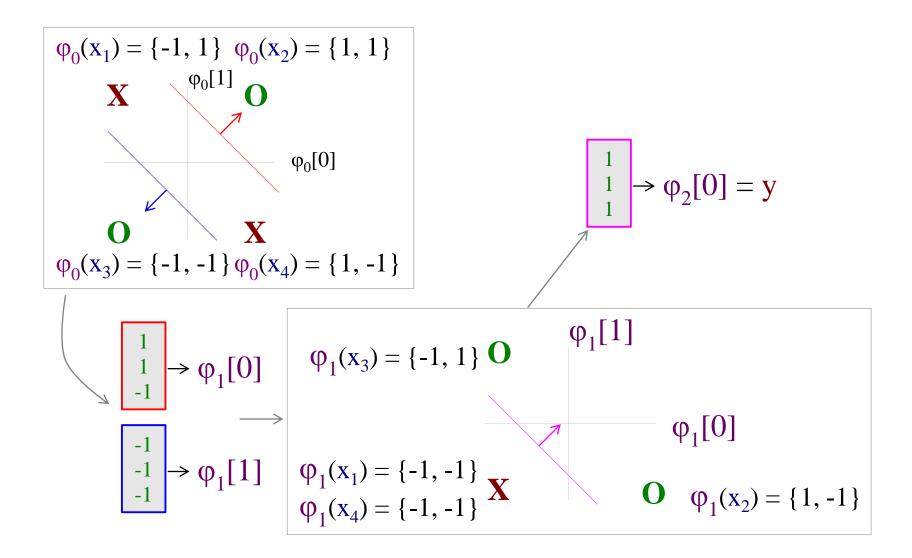


Example: binary classification with a neural network

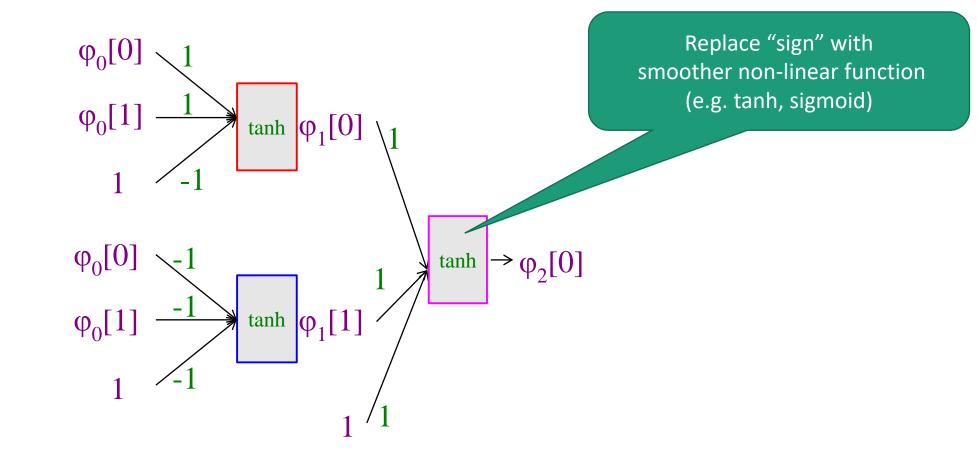
• These classifiers map to a new space



Example: binary classification with a neural network



Example: the final network can correctly classify the examples that the perceptron could not.

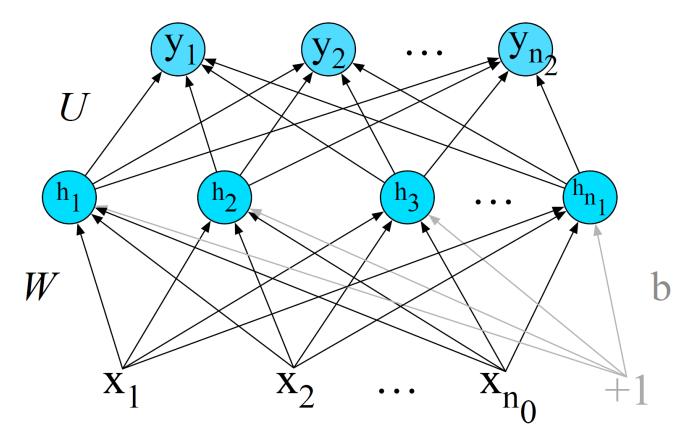


Feedforward Neural Networks

Components:

- an input layer
- an output layer
- one or more hidden layers

In a fully connected network: each hidden unit takes as input all the units in the previous laye No loops!



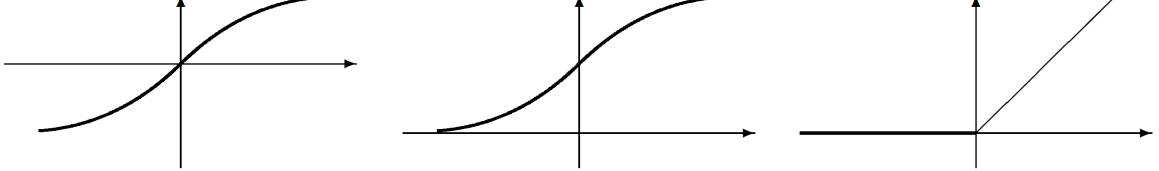
A 2-layer feedforward neural network

Designing Neural Networks: Activation functions

- Hidden layer can be viewed as set of hidden features
- The output of the hidden layer indicates the extent to which each hidden feature is "activated" by a given input
- The activation function is a non-linear function that determines range of hidden feature values

Designing Neural Networks: Activation functions

Hyperbolic tangentLogistic functionRectified linear unit $tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $sigmoid(x) = \frac{1}{1 + e^{-x}}$ relu(x) = max(0,x)output rangesoutput rangesoutput rangesoutput rangesfrom -1 to +1from 0 to +1from 0 to ∞



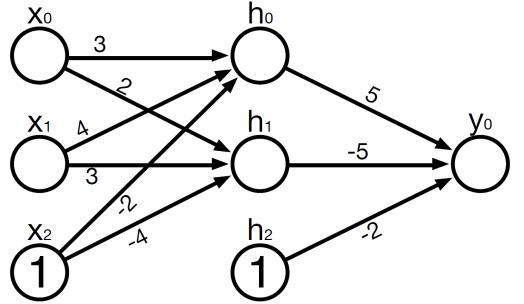
Designing Neural Networks: Network structure

- 2 key decisions:
 - Width (number of nodes per layer)
 - Depth (number of hidden layers)
- More parameters means that the network can learn more complex functions of the input

Forward Propagation: For a given network, and some input values, compute output



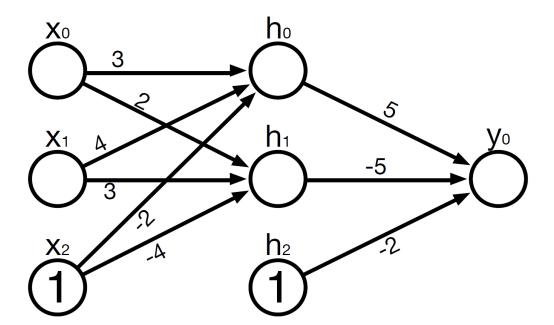
Forward Propagation: For a given network, and some input values, compute output



Given input (1,0) (and sigmoid non-linearities), we can calculate the output by processing one layer at a time:

Layer	Node	Summation	Activation
hidden	h_0	$1\times 3 + 0\times 4 + 1\times -2 = 1$	0.731
hidden	h_1	$1\times 2 + 0\times 3 + 1\times -4 = -2$	0.119
output	y_0	$0.731 \times 5 + 0.119 \times -5 + 1 \times -2 = 1.060$	0.743

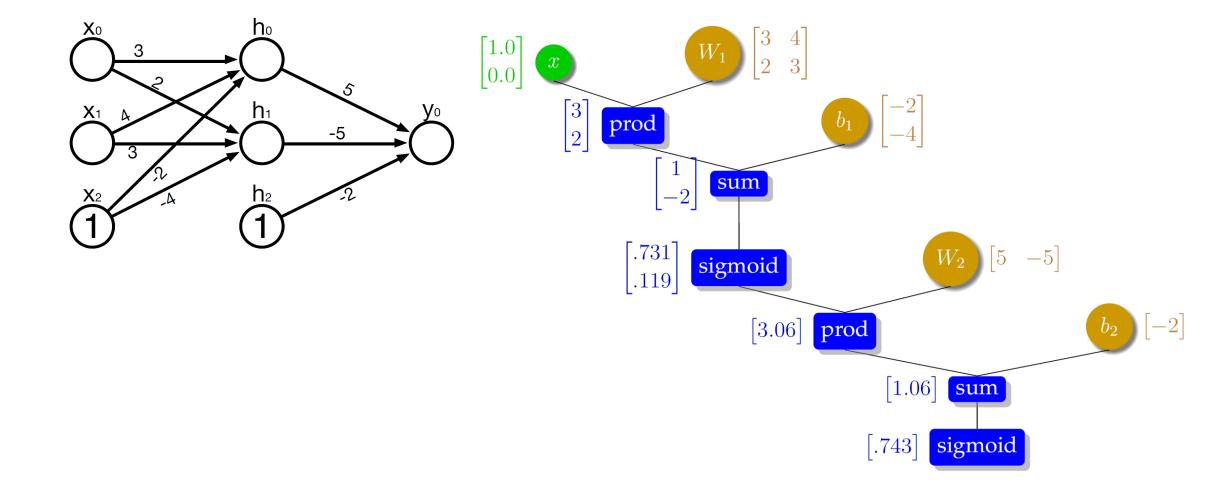
Forward Propagation: For a given network, and some input values, compute output



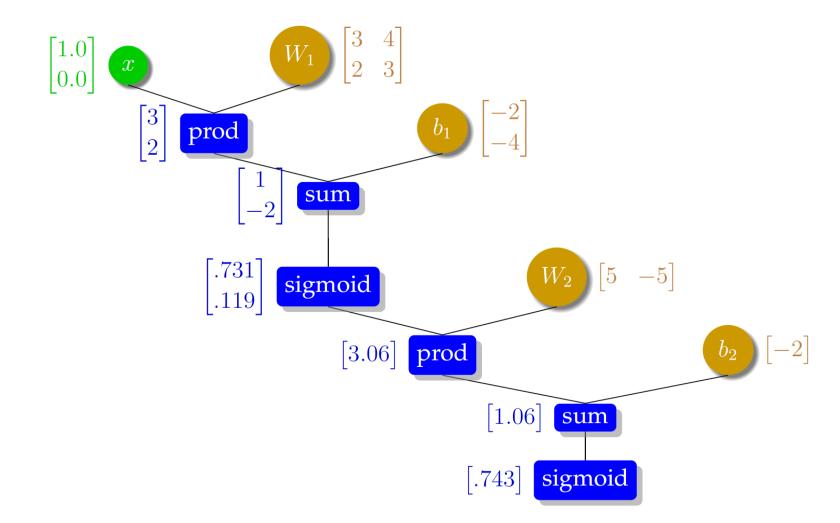
Output table for all possible inputs:

Input x_0	Input x_1	Hidden h_0	Hidden h_1	Output y_0
0	0	0.119	0.018	0.183 ightarrow 0
0	1	0.881	0.269	0.743 ightarrow 1
1	0	0.731	0.119	0.743 ightarrow 1
1	1	0.993	0.731	$0.334 \rightarrow 0$

Neural Networks as Computation Graphs



Computation Graphs Make Prediction Easy: Forward Propagation consists in traversing graph in topological order



Neural Networks so far

- Powerful non-linear models for classification
- Predictions are made as a sequence of simple operations
 - matrix-vector operations
 - non-linear activation functions
- Choices in network structure
 - Width and depth
 - Choice of activation function
- Feedforward networks
 - no loop
- Next: how to train