Training Neural Networks

CMSC 470
Marine Carpuat

Neural Networks so far

Powerful non-linear models for classification

Predictions are made as a sequence of simple operations
* matrix-vector operations
* non-linear activation functions

Choices in network structure
* Width and depth
e Choice of activation function

Feedforward networks
* no loop

Next: how to train

Neural Networks as Computation Graphs

Computation Graphs Make Prediction Easy:
Forward Propagation consists in traversing graph
in topological order

sigmoid

Computation Graph

e Graph contains 3 different types of nodes
of the models (e.g., W1, b1, W2, b2)
X
* operations between parameters and input (e.g., product, sum, sigmoid)

* Acyclical directed graph

* No recursion or loops

* So far each computation node in the graph should consist of
* A function that executes its computation operation
* Links to input nodes
* When processing an example, the computed value
(we’ll add 2 more items to enable training)

How do we train a nheural network?

For training, we need
* Data: (a large number of) examples paired with their correct class (x,y)

* Loss/error function: quantify how bad our prediction y is compared to

the truth t
e E.g. squared error (aka L2 loss) error = 5(75 — ?J)Z

* An algorithm to minimize the loss: stochastic gradient descent

Extending the Computation Graph to
Compute the Loss

sigmoid

Computing Gradients: Chain rule decomposes
computation of gradient along the nodes

sum

sigmoid W2

dsum __ do d

. . do __ .
dprod — di; — a2 =l g, = U prod

dprod 57,01 = d%’él +12 =1, 5—202 =1 sum
o . obe dBI dscii,%?gd = 5 o(i)(1 — o(7)) sigmoid

dA — dB dA

_dl2 _do_ dlo N2 _ 4
dsigmoid ~ dz diQ(t Z) =t—1 L2

Training lllustrated

3 4 0484 0
1.0 W, [] —u[}
[0_0} o 2 3 —.0258 0
3] gumgy [—-0935] [0484 0 b, [2] —u[0484 }
o| —116 | |—.0258 0 —4] ~P[—.0258

1] Sum 0484 0484
—2 —.0258|" | —.0258

731| pey———n | 0484 e [5 5] — u[.0360 00587
[.119] sigmoid _—.0258} N |] []
EXGN prod [_’2;126},[.0360 00587] 28 [2] - p1[.0492]
[1.06] ey |.0492], [.0492]

[.743] Glaatel [101] x [.257] = [.0492]
1.0]

.0331] Q#ey |-257]

Computation Graph

* Graph contains 3 different types of nodes
of the models (e.g., W1, b1, W2, b2)
X
* operations between parameters and input (e.g., product, sum, sigmoid)

e Acyclical directed graph
* No recursion or loops

e So far each computation node in the graph should consist of
e A function that executes its computation operation
* Links to input nodes
* When processing an example in the forward pass, the computed value
* A function that executes its gradient computation
Links to children nodes (to obtain downstream gradient values)
When processing an example in the backward pass, the computed gradient

Computation Graph: A Powerful Abstraction

* To build a system, we only need to:
e Define network structure
* Define loss

* Provide data
* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
e Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.

Exploiting parallel processing

* Using vector matrix operations helps

* E.g., if a layer has 200 nodes a matrix operation Wh requires 200 x 200 = 40000
multiplications

* Can benefit from efficient implementations for Graphics Processing Units (GPU)

* “Minibatch” training by processing multiple examples at a time helps
further
 Compute parameter updates based on a “minibatch” of examples

* instead of one example at a time

* More efficient: matrix-matrix operations replace multiple matrix-vector
operations

* Can lead to better model parameters

Neural Networks

* Originally inspired by human neurons, but now simply an abstract
computational device

e Can be thought of as combinations of neural units, where each unit
multiplies input by a weight vector, adds a bias, and then applies a non-
linear activation function

* Or alternatively as a computation graph

* Power comes from ability of early layers to learn representations (i.e.
features) that can be used by later layers in the network

Neural Networks

Choices in network structure
* Width and depth
* Choice of activation function

Feedforward networks (no loop)

Forward Propagation: predictions are made as a sequence of simple operations
* matrix-vector operations
* non-linear activation functions

Training with the back-propagation algorithm
* Requires defining a loss/error function
e Gradient descent + chain rule
* Easy to implement on top of computation graphs

