
Training Neural Networks

CMSC 470

Marine Carpuat



Neural Networks so far

• Powerful non-linear models for classification

• Predictions are made as a sequence of simple operations
• matrix-vector operations
• non-linear activation functions

• Choices in network structure
• Width and depth
• Choice of activation function

• Feedforward networks
• no loop

• Next: how to train



Neural Networks as Computation Graphs



Computation Graphs Make Prediction Easy:
Forward Propagation consists in traversing graph 
in topological order 



Computation Graph

• Graph contains 3 different types of nodes
• Parameters of the models (e.g., W1, b1, W2, b2)
• Input x
• operations between parameters and input (e.g., product, sum, sigmoid)

• Acyclical directed graph
• No recursion or loops

• So far each computation node in the graph should consist of
• A function that executes its computation operation
• Links to input nodes
• When processing an example, the computed value
(we’ll add 2 more items to enable training)



How do we train a neural network?

For training, we need

• Data: (a large number of) examples paired with their correct class (x,y)

• Loss/error function: quantify how bad our prediction y is compared to 
the truth t
• E.g. squared error (aka L2 loss)

• An algorithm to minimize the loss: stochastic gradient descent



Extending the Computation Graph to 
Compute the Loss



Computing Gradients: Chain rule decomposes 
computation of gradient along the nodes 



Training Illustrated



Computation Graph

• Graph contains 3 different types of nodes
• Parameters of the models (e.g., W1, b1, W2, b2)
• Input x
• operations between parameters and input (e.g., product, sum, sigmoid)

• Acyclical directed graph
• No recursion or loops

• So far each computation node in the graph should consist of
• A function that executes its computation operation
• Links to input nodes
• When processing an example in the forward pass, the computed value
• A function that executes its gradient computation
• Links to children nodes (to obtain downstream gradient values)
• When processing an example in the backward pass, the computed gradient



Computation Graph: A Powerful Abstraction

• To build a system, we only need to:
• Define network structure
• Define loss
• Provide data
• (and set a few more hyperparameters to control training)

• Given network structure
• Prediction is done by forward pass through graph (forward propagation)
• Training is done by backward pass through graph (back propagation)
• Based on simple matrix vector operations

• Forms the basis of neural network libraries
• Tensorflow, Pytorch, mxnet, etc.



Exploiting parallel processing

• Using vector matrix operations helps
• E.g., if a layer has 200 nodes a matrix operation Wh requires 200 x 200 = 40000 

multiplications

• Can benefit from efficient implementations for Graphics Processing Units (GPU)

• “Minibatch” training by processing multiple examples at a time helps 
further
• Compute parameter updates based on a “minibatch” of examples

• instead of one example at a time

• More efficient: matrix-matrix operations replace multiple matrix-vector 
operations

• Can lead to better model parameters



Neural Networks

• Originally inspired by human neurons, but now simply an abstract 
computational device

• Can be thought of as combinations of neural units, where each unit 
multiplies input by a weight vector, adds a bias, and then applies a non-
linear activation function

• Or alternatively as a computation graph

• Power comes from ability of early layers to learn representations (i.e. 
features) that can be used by later layers in the network



Neural Networks

• Choices in network structure
• Width and depth

• Choice of activation function

• Feedforward networks (no loop)

• Forward Propagation: predictions are made as a sequence of simple operations
• matrix-vector operations

• non-linear activation functions

• Training with the back-propagation algorithm
• Requires defining a loss/error function

• Gradient descent + chain rule

• Easy to implement on top of computation graphs


