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Language Models
What you should know

* What is a language model
* A probability model that assigns probabilities to sequences of words
e Can be used to score or generate sequences

* N-gram language models

 How they are defined, and what approximations are made in this definition
(the Markov Assumption)

 How they are estimated from data: count and normalize

* But we need specific techniques to deal with zeros
e word sequences unseen in training: add 1 smoothing, backoff
e word types unseen in training: open vocabulary models with UNK token



Pros and cons of n-gram models

* Really easy to build, can train on billions and billions of words
* Smoothing helps generalize to new data

* Only work well for word prediction if the test corpus looks like the
training corpus

* Only capture short distance context



Evaluating Language Models



Evaluation:
How good is our model?

* Does our language model prefer good sentences to bad ones?

* Assign higher probability to “real” or “frequently observed” sentences
* Than “ungrammatical” or “rarely observed” sentences?

e Extrinsic vs intrinsic evaluation



An intrinsic evaluation metric for language models:
Perplexity

The best language model is one that best predicts an unseen test set
e Gives the highest P(sentence)
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Minimizing perplexity is the same as maximizing probability



Interpreting perplexity as a branching factor

* Let’s suppose a sentence consisting of random digits

* What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?
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- %_1 The Branching factor of a language is the
=10 number of possible next words that can follow

any word.
We can think of perplexity as the weighted
average branching factor of a language.




Lower perplexity = better model

 Comparing models on data from the Wall Street Journal

* Training: 38 million words, test: 1.5 million words

N-gram Bigram Trigram
Order

Perplexity 962



The perils of overfitting

* N-grams only work well for word prediction if the test corpus looks
like the training corpus

* |In real life, it often doesn’t!

* We need to train robust models that generalize

 Smoothing is important
* Choose n carefully



A Neural Network-based
Language Model



Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Representing Words

 “one hot vector”

dog=[©, 0,0, 0,1, 0, 0, 0.
cat =[ 0,0, 0, 0, 0, 0, 1, O ..
eat =[ 0, 1, 0, 0, 0, 0, 0, O .

* That’s a large vector! practical solutions:
* limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units



Language Modeling with
~eedforward Neural Networks
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Example: Prediction with a Feedforward LM

Output layer P(wlu) X[V

Projection layer 1x3d (@6 -0 --00) (€@ :-0 :- 06 (00 - @ +- 00

Vixd, U
Hidden layer 1xdy [

dhX3d W

Pw=V 45wy 3w 2wy 3)

concatenated embeddings | embedding for embegding for embezlding for
for context words word 35 word 9925 word 45180 word 42
g LN L
3.-|hole] in the ground there lived [.¢§

W Wi-2 W1 Wi



Example: Prediction with a Feedforward LM
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Note: bias omitted in figure



Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
» sequences of words in the [anguage of interest

* Error/loss: negative log likelihood

At the corpus level error(41) = —); log P, (E)

E In corpus

* At the word level error(1) = —log P (e;|e; ...e;_1)



This is the same loss as the one we saw
earlier for Multiclass Logistic Regression

* Loss function for a single example

Lee(9,y) = — ) H{y=k}logp(y = klx)

1{ } is an indicator function that evaluates to

1 if the condition in the brackets is true, and
to 0 otherwise




Example: Parameter Estimation

]
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Loss function at each position t
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Parameter update rule
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Word Embeddings: a useful by-product of

neural LMs

Word

Embedding
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e Words t

nat occurs in similar

contexts tend to have similar

embedo

INngs

 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks



Word Embeddings
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Word Embeddings
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Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural  Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
e Synonyms vs. antonyms
* Multiple senses of a word

AN -

QUEEN UNCLE
/ QUEEN

KING

AUNT

KING



Language Modeling with
~eedforward Neural Networks
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Count-based n-gram models vs. feedforward
neural networks

* Pros of feedforward neural LM
* Word embeddings capture generalizations across word typesq

e Cons of feedforward neural LM

* Closed vocabulary
* Training/testing is more computationally expensive

* Weaknesses of both types of model

* Only work well for word prediction if the test corpus looks like the training
corpus

* Only capture short distance context



Language Models
What you should know

* What is a language model
* N-gram language models
* Evaluating language models with perplexity

* Feedforward neural language models

* Use a neural network as a probabilistic classifier to compute probability of the
next word given the previous n words

* Trained like any neural network by backpropagation
* Learn word embeddings in the process of language modeling

* Strengths and weaknesses of n-gram and neural language models



