

Language Models: Evaluation & Neural Models

CMSC 470

Marine Carpuat

Slides credit: Jurasky & Martin

Language Models What you should know

- What is a language model
 - A probability model that assigns probabilities to sequences of words
 - Can be used to score or generate sequences
- N-gram language models
 - How they are defined, and what approximations are made in this definition (the Markov Assumption)
 - How they are estimated from data: count and normalize
 - But we need specific techniques to deal with zeros
 - word sequences unseen in training: add 1 smoothing, backoff
 - word types unseen in training: open vocabulary models with UNK token

Pros and cons of n-gram models

- Really easy to build, can train on billions and billions of words
- Smoothing helps generalize to new data
- Only work well for word prediction if the test corpus looks like the training corpus
- Only capture short distance context

Evaluating Language Models

Evaluation: How good is our model?

- Does our language model prefer good sentences to bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences
 - Than "ungrammatical" or "rarely observed" sentences?

Extrinsic vs intrinsic evaluation

An intrinsic evaluation metric for language models: Perplexity

The best language model is one that best predicts an unseen test set

Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words:

Chain rule:

For bigrams:

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1 w_2 ... w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_1 ... w_{i-1})}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i | w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

Interpreting perplexity as a branching factor

- Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?

$$PP(W) = P(w_1 w_2 ... w_N)^{-\frac{1}{N}}$$

$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$

$$= \frac{1}{10}^{-1}$$

$$= 10$$

The Branching factor of a language is the number of possible next words that can follow any word.

We can think of **perplexity as the weighted** average branching factor of a language.

Lower perplexity = better model

- Comparing models on data from the Wall Street Journal
- Training: 38 million words, test: 1.5 million words

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

The perils of overfitting

 N-grams only work well for word prediction if the test corpus looks like the training corpus

In real life, it often doesn't!

- We need to train robust models that generalize
 - Smoothing is important
 - Choose n carefully

A Neural Network-based Language Model

Toward a Neural Language Model

Representing Words

"one hot vector"

```
dog = [ 0, 0, 0, 0, 1, 0, 0, 0 ...]
cat = [ 0, 0, 0, 0, 0, 0, 1, 0 ...]
eat = [ 0, 1, 0, 0, 0, 0, 0, 0 ...]
```

- That's a large vector! practical solutions:
 - limit to most frequent words (e.g., top 20000)
 - cluster words into classes
 - break up rare words into subword units

Language Modeling with Feedforward Neural Networks

Example: Prediction with a Feedforward LM

Example: Prediction with a Feedforward LM

Note: bias omitted in figure

Estimating Model Parameters

 Intuition: a model is good if it gives high probability to existing word sequences

- Training examples:
 - sequences of words in the language of interest
- Error/loss: negative log likelihood
 - At the corpus level $\operatorname{error}(\lambda) = -\sum_{E \text{ in corpus}} \log P_{\lambda}(E)$
 - At the word level error(λ) = $-\log P_{\lambda}(e_t|e_1 \dots e_{t-1})$

This is the same loss as the one we saw earlier for Multiclass Logistic Regression

Loss function for a single example

$$L_{CE}(\hat{y}, y) = -\sum_{k=1}^{K} 1\{y = k\} \log p(y = k|x)$$

1{ } is an indicator function that evaluates to 1 if the condition in the brackets is true, and to 0 otherwise

Example: Parameter Estimation

Loss function at each position t

$$L = -\log p(w_t|w_{t-1}, ..., w_{t-n+1})$$

Parameter update rule

$$heta_{t+1} = heta_t - \eta \, rac{\partial - \log p(w_t|w_{t-1},...,w_{t-n+1})}{\partial \, heta}$$

Word Embeddings: a useful by-product of neural LMs

- Words that occurs in similar contexts tend to have similar embeddings
- Embeddings capture many usage regularities
- Useful features for many NLP tasks

Word Embeddings

Word Embeddings

```
cable
                                                                     media
                                                              fm
                                                 enline
 growing
             14884mg
                                                                            ddd
 developing
                                                                 news
                                                                 talk
                                                            live
      supporting
                                                                             redi
opening
ontaining producing
                              scoringlaying
losingng
g
             creating
   performing leaving teking eaching
                                                             host
                      ħolding
      <del>dgiyy</del>ing
                       passing
                       ruming
           driving
                                                                         planning
                                                  rum hit
```

Word Embeddings Capture Useful Regularities

Morpho-Syntactic

- Adjectives: base form vs. comparative
- Nouns: singular vs. plural
- Verbs: present tense vs. past tense

[Mikolov et al. 2013]

Semantic

- Word similarity/relatedness
- Semantic relations
- But tends to fail at distinguishing
 - Synonyms vs. antonyms
 - Multiple senses of a word

Language Modeling with Feedforward Neural Networks

Count-based n-gram models vs. feedforward neural networks

- Pros of feedforward neural LM
 - Word embeddings capture generalizations across word typesq
- Cons of feedforward neural LM
 - Closed vocabulary
 - Training/testing is more computationally expensive
- Weaknesses of both types of model
 - Only work well for word prediction if the test corpus looks like the training corpus
 - Only capture short distance context

Language Models What you should know

- What is a language model
- N-gram language models
- Evaluating language models with perplexity
- Feedforward neural language models
 - Use a neural network as a probabilistic classifier to compute probability of the next word given the previous n words
 - Trained like any neural network by backpropagation
 - Learn word embeddings in the process of language modeling
- Strengths and weaknesses of n-gram and neural language models