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How to generate vector embeddings?
One approach: feedforward neural language models

Training a neural language 
model just to get word 

embeddings is expensive!

Is there a faster/cheaper 
way to get word 

embeddings if we don’t 
need the language model?



Roadmap 

• Dense vs. sparse word embeddings

• Generating word embeddings with Word2vec
• Skip-gram model
• Training

• Evaluating word embeddings
• Word similarity
• Word relations
• Analysis of biases



Word embedding methods we’ve seen so far 
yield sparse representations

tf-idf and PPMI vectors are
• long (length |V|= 20,000 to 50,000)
•sparse (most elements are zero)



Alternative: dense vectors

vectors which are
• short (length 50-1000)

• dense (most elements are non-zero)
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Why short dense vectors?

• Short vectors may be easier to use as features in machine 
learning (fewer weights to tune)

• Dense vectors may generalize better than storing explicit 
counts

• They may do better at capturing synonymy:
• car and automobile are synonyms; but are distinct dimensions

• a word with car as a neighbor and a word with automobile as a 
neighbor should be similar, but aren't

• In practice, they work better
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Dense embeddings you can download!

Word2vec
https://code.google.com/archive/p/word2vec/

Fasttext

http://www.fasttext.cc/

Glove
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://www.fasttext.cc/
http://nlp.stanford.edu/projects/glove/


Word2vec

•Popular embedding method

•Very fast to train

•Code available on the web

•Key idea: predict rather than count 



Word2vec

Approach:
• Instead of counting how often each word w occurs 

near "apricot“
• Train a classifier on a binary prediction task:

Is w likely to show up near "apricot"?

Note: we don’t actually care about this task!
But we'll take the learned classifier weights as the word 
embeddings



Insight: running text provides implicitly 
supervised training data!
• A word s near apricot 

• Acts as gold ‘correct answer’ to the question 
• “Is word w likely to show up near apricot?” 

• No need for hand-labeled supervision

• The idea comes from neural language modeling 
• Bengio et al. (2003)
• Collobert et al. (2011) 



Word2Vec: Skip-Gram Task

• Word2vec provides a variety of options. Let's do
• "skip-gram with negative sampling" (SGNS)



Skip-gram algorithm

1. Treat the target word and a neighboring context word as 
positive examples.

2. Randomly sample other words in the lexicon to get 
negative samples

3. Use logistic regression to train a classifier to distinguish 
those two cases

4. Use the weights as the embeddings



Skip-Gram Training Data

• Assume context words are those in +/- 2 word window

• Training sentence:

... lemon, a tablespoon of apricot jam   a pinch ... 

c1            c2   target c3    c4



Skip-Gram Model

Given a tuple (t,c)  = target, context

(apricot, jam)
(apricot, aardvark)

Return probability that c is a real context word:
•P(+|t,c)
•P(−|t,c) = 1−P(+|t,c)



We model probability of positive/negative 
examples using a logistic regression inspired 
model

Dot product between vector 
representation of t and vector 
represention of c
Motivation: words are likely to 
appear near similar words



Skip-gram model for all context words:

Assumption: all context words are independent



Skip-Gram Training Data

• Training sentence:

... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

• Training data: input/output pairs centering on apricot

• Asssume a +/- 2 word window



Skip-Gram Training

• Training sentence:

... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

•For each positive example, 
we'll create k negative 
examples.

•Using noise words
•Any random word that isn't t



Skip-Gram Training

• Training sentence:

... lemon, a tablespoon of apricot jam   a pinch ... 

c1              c2     t c3    c4

k=2



Choosing noise words

• Could pick w according to their unigram frequency P(w)

• More common to chosen then according to pα(w)

• α= ¾ works well because it gives rare noise words slightly higher 
probability

• imagine two events p(a)=.99 and p(b) = .01:



Skip-gram: training set-up

• Let's represent words as vectors of some length (say 300), randomly 
initialized. 

• So we start with 300 * V random parameters and use gradient 
descent to update these parameters

• We need to define a loss function / training objective



Skip-gram: training algorithm

• Objective: we want to maximize

• Intuition: over the entire training set, we’d like to adjust word vector parameters such that

• the similarity of the positive target word, context word pairs (t,c) is maximized

• the similarity of the negative (t,c) pairs is minimized

• Optimization algorithm: stochastic gradient descent

• Iteratively updating t parameters, and c parameters



Skip-gram illustrated

This model has two distinct word embedding 
matrices W and C as parameters! 
We can use W and throw away C, or merge them 
(by addition or concatenation)



Summary: How to learn word2vec (skip-gram) 
embeddings
• Start with V random d-dimensional vectors as initial embeddings

• Take a corpus and take pairs of words that co-occur within window L 
as positive examples 

• Construct negative examples

• Train a logistic regression classifier to distinguish positive from 
negative examples

• Throw away the classifier and keep the embeddings!



Evaluating embeddings

• We can use the same evaluations as for other distributional 
semantic models (see lecture 2)

• Compare to human scores on word similarity-type tasks:
• WordSim-353 (Finkelstein et al., 2002)

• SimLex-999 (Hill et al., 2015)

• Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012) 

• TOEFL dataset: Levied is closest in meaning to: imposed, believed, requested, 
correlated 



Analogy: geometry of embedding space can 
capture relational meaning
vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)

vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)







Word embeddings are a very useful tool

• Can be used as features in classifiers
• Capture generalizations across word types

• Can be used to analyze language usage patterns in large corpora
• E.g., to study change in word meaning



1900 1950 2000

vs.

Word vectors for 1920 Word vectors 1990

“dog” 1920 word vector

“dog” 1990 word vector



Yet word embeddings are not perfect models 
of word meaning

• Limitations include
• One vector per word (even if the word has multiple senses)

• Cosine similarity not sufficient to distinguish antonyms from synonyms

• Embeddings reflect biases and stereotypes implicit in training text



Embeddings reflect human biases and 
stereotypes

• Ask “Paris : France :: Tokyo : x” 

• x = Japan

• Ask “father : doctor :: mother : x” 

• x = nurse

• Ask “man : computer programmer :: woman : x” 
• x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and 
Adam T. Kalai. "Man is to computer programmer as woman is to 
homemaker? debiasing word embeddings." In Advances in Neural 
Information Processing Systems, pp. 4349-4357. 2016.



Embeddings reflect human biases and 
stereotypes
• Implicit Association test (Greenwald et al 1998): How associated are 

• concepts (flowers, insects) &  attributes (pleasantness, unpleasantness)?
• Studied by measuring timing latencies for categorization.

• Psychological findings on US participants:
• African-American names are associated with unpleasant words (more than 

European-American names)
• Male names associated more with math, female names with arts
• Old people's names with unpleasant words, young people with pleasant words.

• Caliskan et al. replication with embeddings:
• African-American names had a higher cosine with unpleasant words
• European American names had a higher cosine with pleasant words

• Embeddings reflect and replicate all sorts of pernicious biases.

Caliskan, Aylin, Joanna J. Bryson and Arvind Narayanan. 2017. Semantics derived automatically from 
language corpora contain human-like biases. Science 356:6334, 183-186.



So what can we do about bias?

• Use embeddings as a historical tool to study bias
• Garg, Nikhil, Schiebinger, Londa, Jurafsky, Dan, and Zou, James (2018). Word 

embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences, 115(16), E3635–E3644

• Do not download and use word embeddings blindly: know what is the 
underlying model, how they were trained, on what data

• Also: ongoing research on attempting to mitigate bias



Roadmap 

• Dense vs. sparse word embeddings

• Generating word embeddings with Word2vec
• Skip-gram model
• Training

• Evaluating word embeddings
• Word similarity
• Word relations
• Analysis of biases


