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Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Count-based n-gram models vs. feedforward
neural networks

* Pros of feedforward neural LM
* Word embeddings capture generalizations across word typesq

e Cons of feedforward neural LM

* Closed vocabulary
* Training/testing is more computationally expensive

* Weaknesses of both types of model

* Only work well for word prediction if the test corpus looks like the training
corpus

* Only capture short distance context



Language Modeling
with Recurrent Neural Networks

Figure by Philipp Koehn



Recurrent Neural Networks (RNN)

The hidden layer includes a recurrent Unrolling the RNN over the time
connection as part of its input sequence as a feed-forward network
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memory, remembering
earlier context

Figures from Jurafsky & Martin



Unrolled RNN illustrated
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Prediction/Inference with RNNs

function FORWARDRNN((x, network) returns output sequence y

ho <0

for i< 1 to LENGTH(x) do
hi<—g(U hi_1 + W x;)
yi<—f(V hi)

return y

For language modeling, f = softmax function

to provide normalized probability distribution
over possible output classes




Training RNNs with backpropagation

* Training goal: estimate
parameter values for U, V, W

e Use same loss as for feedforward
language models
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algorithms as usual




Training RNNs with backpropagation
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Practical Training Issues:
vanishing/exploding gradients
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Figure 16: An example of the vanishing gradient problem.

Figure by Graham Neubig

multiple ways to work\

around this problem:
- RelLU activations help

- Dedicated RNN
architecture (Long
Short Term Memory
Networks)
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Aside: Long Short Term Memory Networks
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What do Recurrent Language Models Learn?

Cell sensitive to position in line:
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Cell that turns on inside quotes:

_

Figure from Karpathy 2015



What do Recurrent Language Models Learn?

Cell that turns on inside comments and quotes:
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Cell that robustly activates inside if statements:
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What do Recurrent Language Models Learn?

* Parameters are hard to interpret, so we can gain insights by analyzing
their output behavior instead

e Can capture (some) long-distance dependencies

After much economic progress over the years, the country has..

The country, which has made much economic progress over the years, still has..



Recurrent neural network language models

* Have all the strengths of feedforward language model
* And do a better job at modeling long distance context

* However
* Training is trickier due to vanishing/exploding gradients
* Performance on test sets is still sensitive to distance from training data



