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A recurrent [anguage model

(@) A single RNN time step (b) An unrolled RNN
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A recurrent [anguage model

(a) A single RNN time step (b) An unrolled RNN
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Examples of RNN variants

* LSTMs
e Aim to address vanishing/exploding gradient issue
(a) A stacked RNN (b) With residual connections
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Training in practice: online

Algorithm 1 A fully online training algorithm

1: procedure ONLINE

2 for several epochs of training do

3 for each training example in the data do

4 Calculate gradients of the loss

5: Update the parameters according to this gradient
6 end for

7 end for

8: end procedure




Training in practice: batch

Algorithm 2 A batch learning algorithm

1: procedure BATCH

2 for several epochs of training do

3 for each training example in the data do

4: Calculate and accumulate gradients of the loss

5: end for

6 Update the parameters according to the accumulated gradient
7 end for

8: end procedure




Training in practice: minibatch
 Compromise between online and batch

 Computational advantages
e Can leverage vector processing instructions in modern hardware
* By processing multiple examples simultaneously
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Problem with minibatches: in l[anguage modeling,
examples don’t have the same length
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Machine Translation

* Translation system * 3 problems
* |[nput: source sentence F

* QOutput: target sentence E

e Can be viewed as a function * Modeling
* how to define P(.)?

E =mt(F)
* Training/Learning
* how to estimate parameters from
* Statistical machine translation systems parallel corpora?

~

FE = argmax P(E | F;0)
E

e Search
* How to solve argmax efficiently?



Fncoder-decoder model
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Encoder-decoder model
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Generating Output

* We have a model P(E|F), how can we generate translations?

e 2 methods

 Sampling: generate a random sentence according to probability distribution

* Argmax: generate sentence with highest probability



Ancestral Sampling

 Randomly generate words one
by one

while yi1 1= “</s>":
yi ~ Py | X, y1, ..., Y1)

e Until end of sentence symbol

* Done!



Greedy search

* One by one, pick single highest
probability word

* Problems
* Often generates easy words first

e Often prefers multiple common
words to rare words

while yj.1 1= “</s>":

y; = argmax P(y; | X, y1, ..

., Yi1)
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Beam Search

Example with beam size b =2

We consider b top hypotheses at each time
step




Other encoder structures:
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Motivation:
Help bootstrap learning
By shortening length of
dependencies

Motivation:

- Take 2 hidden vectors from source
encoder

-  Combine them into a vector of size
required by decoder



Introduction to Neural Machine Translation

* Neural language models review

e Sequence to sequence models for MT
* Encoder-Decoder
« Sampling and search (greedy vs beam search)
* Practical tricks

* Sequence to sequence models for other NLP tasks

e Attention mechanism



