
Modeling language 
as a sequence of tokens

CMSC 470

Marine Carpuat



Beyond MT: Encoder-Decoder can be used as 
Conditioned Language Models P(Y|X) to generate 
text Y based on some input X



Given some text, how to segment 
it into a sequence of tokens?



Turn this text into a sequence of tokens

They’re not family or close friends, and they often don’t know Makris
by name. 

https://dbknews.com/2019/10/23/high-five-
guy-umd-checking-in-umd-legend/



Turn this text into a sequence of tokens

姚明进入总决赛

Example from Martin & Jurafsky chap 2



Turn this text into a sequence of tokens

uygarlaştıramadıklarımızdanmışsınızcasına

(Meaning: behaving as if you are among those whom we could not cause to become civilized)



Basic preprocessing steps to get a sequence 
of tokens from running text

• Sentence segmentation: break up a text into sentences
• Based on cues like periods or exclamation points

• Tokenization: task of separating out words in running text 
• Can be handled by rules/regular expressions
• Split on whitespace is often not sufficient
• Additional rules needed to handle punctuation, abbreviations, emoticons, hashtags…

• Normalization to minimize sparsity:
• Normalize case, punctuation, encoding of diacritics in Unicode…



Vocabulary issues with neural sequence-to-
sequence models
• Out of vocabulary words

• the neural encoder-decoder models we’ve seen have a closed vocabulary
• how can they process/generate new words at test time?

• The larger the vocabulary, the larger the models
• One embedding vector per word type
• Dimension of output softmax vector increases with vocab size

• How can we reduce the model’s vocabulary size without restricting 
the nature of language it can model?



Can we model text as sequences of 
characters instead of sequences of words?
Character level models

• View text as sequence of characters rather than sequences of words

• Pro: Character vocabulary is smaller than word vocabulary

• Con: Sequences are longer

If naively implemented as an RNN

• RNN composition function should capture both how words are formed and how sentences are formed

• Character embeddings perhaps not as useful as word embeddings

Open research question: can we design neural architectures that model words and characters jointly?

See [Ling et al. 2015; Jaech et al. 2016; Chen et al 2018, …]

Today: can we use sequences of subwords as a middle ground between word and character models?

https://www.aclweb.org/anthology/D15-1176/
https://www.aclweb.org/anthology/W16-6212/
https://www.aclweb.org/anthology/N18-1116/


Segmenting words into subword
using Linguistic Knowledge
Morphological Analysis



Morphology

• Study of how words are constructed from smaller units of meaning

• Smallest unit of meaning = morpheme
• fox has morpheme fox

• cats has two morphemes cat and –s

• Two classes of morphemes:
• Stems: supply the “main” meaning 

• Aka root / lemma

• Affixes: add “additional” meaning



Topology of Morphologies

• Concatenative vs. non-concatenative

• Derivational vs. inflectional

• Regular vs. irregular



Concatenative Morphology

• Morpheme+Morpheme+Morpheme+…

• Stems (also called lemma, base form, root, lexeme):
• hope+ing → hoping

• hop+ing → hopping

• Affixes:
• Prefixes: Antidisestablishmentarianism

• Suffixes: Antidisestablishmentarianism

• Agglutinative languages (e.g., Turkish)
• uygarlaştıramadıklarımızdanmışsınızcasına →

uygar+laş+tır+ama+dık+lar+ımız+dan+mış+sınız+casına

• Meaning: behaving as if you are among those whom we could not cause to become civilized



Non-Concatenative Morphology

• Infixes (e.g., Tagalog)
• hingi (borrow)

• humingi (borrower)

• Circumfixes (e.g., German)
• sagen (say)

• gesagt (said)



Templatic Morphologies

• Common in Semitic languages

• Roots and patterns

بوكتم

ب

و? ??مَ 

تك

בוכת

ב

ו? ??

תכ

maktuub
written

ktuuv
written

Arabic Hebrew



Inflectional Morphology

• Stem + morpheme → 
• Word with same part of speech as the stem

• Adds: tense, number, person,…

• Plural morpheme for English noun
• cat+s
• dog+s

• Progressive form in English verbs
• walk+ing
• rain+ing



Derivational Morphology

• Stem + morpheme →  
• New word with different meaning or different part of speech
• Exact meaning difficult to predict

• Nominalization in English: 
• -ation: computerization, characterization
• -ee: appointee, advisee
• -er: killer, helper

• Adjective formation in English:
• -al: computational, derivational
• -less: clueless, helpless
• -able: teachable, computable



Noun Inflections in English

• Regular
• cat/cats

• dog/dogs

• Irregular
• mouse/mice

• ox/oxen

• goose/geese



Verb Inflections in English



Morphological Parsing

• Computationally decompose input forms into component 
morphemes

• Components needed:
• A lexicon (stems and affixes)

• A model of how stems and affixes combine

• Orthographic rules



Morphological Parsing: Examples

WORD STEM (+FEATURES)

cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

ducks (duck +N +PL) or (duck +V +3SG)

merging merge +V +PRES-PART

caught (catch +V +PAST-PART) or (catch +V +PAST)



Different Approaches

• Lexicon only

• Rules only

• Lexicon and rules
• finite-state transducers



Lexicon-only

• Simply enumerate all surface forms and analyses

acclaim  acclaim $N$

acclaim         acclaim $V+0$

acclaimed       acclaim $V+ed$

acclaimed       acclaim $V+en$

acclaiming      acclaim $V+ing$

acclaims        acclaim $N+s$

acclaims        acclaim $V+s$

acclamation     acclamation $N$

acclamations    acclamation $N+s$

acclimate       acclimate   $V+0$

acclimated      acclimate   $V+ed$

acclimated      acclimate   $V+en$

acclimates      acclimate   $V+s$

acclimating     acclimate   $V+ing$



Rule-only

• Cascading set of rules
• s → ε

• ation → e

• ize → ε 

• …

• Example
• generalizations

→ generalization
→ generalize
→ general 

• organizations

→ organization
→ organize
→ organ



Morphological Parsing with Finite State 
Transducers

Combination of lexicon + rules

A machine that reads and writes on two tapes:

One tape contains the input, the other tape as the analysis



Finite State Automaton (FSA)
baa!
baaa!
baaaa!
baaaaa!
...

q0 q1 q2 q3 q4

b a a

a

!

/baa+!/

Language:

Regular Expression:

Finite-State Automaton:



Finite-State Transducers (FSTs)

• A two-tape automaton that recognizes or generates pairs of strings

• Think of an FST as an FSA with two symbol strings on each arc
• One symbol string from each tape



Terminology

• Transducer alphabet (pairs of symbols):
• a:b = a on the upper tape, b on the lower tape

• a:ε = a on the upper tape, nothing on the lower tape

• If a:a, write a for shorthand

• Special symbols
• # = word boundary

• ^ = morpheme boundary

• (For now, think of these as mapping to ε)



FST for English Nouns

• First try:



FST for English Nouns



Handling Orthography



Complete Morphological Parser



Practical NLP Applications

• In practice, it is almost never necessary to write FSTs by hand…

• Typically, one writes rules:
• Chomsky and Halle Notation: a → b / c__d

= rewrite a as b when occurs between c and d

• E-Insertion rule

• Rule → FST compiler handles the rest…

ε → e / 

x
s
z

^ __ s #



Segmenting words into subword
using counts
Byte Pair Encodings



One approach to unsupervised subword
segmentation

• Goal: a kind of tokenization where
• most tokens are words

• but some tokens are frequent morphemes or other subwords

• So that unseen words can be represented by combining seen subword units

• “Byte-pair encoding” (BPE) [Sennrich et al. 2016] is one technique to 
generate such tokenization
• Based on a method for text compression

• Intuition: merge frequent pairs of characters

https://www.aclweb.org/anthology/P16-1162/


Learning a set of subwords with the
Byte Pair Encoding Algorithm
• Start state:

• Given set of symbols = set of characters
• Each word is represented as a sequence of character + end of word symbol “_”

• At each step:
• Count number of symbol pairs
• Find the most frequent pair
• Replace it with a new merged symbol

• Terminate
• After k merges; k is a hyperparameter
• The resulting symbol set will consist of original characters + k new symbols



Byte Pair Encoding Illustrated

• Starting state

• After the first merge



Byte Pair Encoding Illustrated

• After the 2nd merge

• After the 3rd merge



Byte Pair Encoding Illustrated

• If we continue, the next merges are



Byte Pair Encoding at test time

• On a new test sentence
• Segment each test sentence into characters and apply end of word token

• Greedily apply merge rules in the order we learned them at training time

• E.g., given the learned subwords

• What is the BPE tokenization of 
• “newer_”?

• “lower_”?





Alternatives to BPE

• Wordpiece [Wu et al. 2016]
• Start with some simple tokenization just like BPE

• Puts a special word boundary token at the beginning rather than end of word

• Merge pairs to minimize the language model likelihood of the training data

• SentencePiece [Kudo & Richardson 2018]
• Works from raw text (no need for initial tokenization, whitespace handled like 

any other symbol)

https://arxiv.org/abs/1609.08144
https://www.aclweb.org/anthology/D18-2012/


Modeling language as a sequence of tokens
Summary
• Segmenting running text into tokens is not a trivial task

• White-space and punctuation-based rules provide a first cut for many languages, but 
are not sufficient

• The nature of the segmentation defines the size/nature of the model 
vocabulary
• And whether unknown words can be processed at test time

• 2 approaches to segment words into subwords
• Use linguistic knowledge to perform morphological analysis: segment words into 

morphemes
• Using training data frequencies only: e.g., Byte-Pair Encoding algorithm


