

Multilingual and Multitask Learning in seq2seq Models

CMSC 470

Marine Carpuat

Multilingual Machine Translation

Neural MT only helps in high-resource settings

BLEU Scores with Varying Amounts of Training Data

Ongoing research

- Learn from other sources of supervision than pairs (E,F)
 - Monolingual text
 - Multiple languages
- Incorporate linguistic knowledge
 - As additional embeddings
 - As prior on network structure or parameters
 - To make better use of training data

Multilingual Translation

- Goal: support translation between any N languages
- Naïve approach: build on translation system for each language pair and translation direction
 - Results in N² models
 - Impractical computation time
 - Some language pairs have more training data than others
- Can we train a single model instead?

The Google Multilingual NMT System [Johnson et al. 2017]

The Google Multilingual NMT System [Johnson et al. 2017]

- Shared encoder, shared decoder for all languages
- Train on sentence pairs in all languages
- Add token to the input to mark target language

<2es> Hello, how are you? -> Hola, ¿cómo estás?

A standard encoder-decoder LSTM architecture, updated to enable parallelization/multi-GPU training

Pros and Cons?

Advantages

- Translation for low resource languages benefits from data for high resource languages
- Enables "zero shot" translation
 - Translation between language pairs which have not been seen (as a pair) during training
- Can handle code-switched input
 - Sequences that contain more than one language

Drawbacks/Issues

- Requires a single shared vocabulary for all languages
 - BPE, wordpiece
- Model size
- Opaque
- No direct control on output language
 - Bias toward high-resource languages?

How well does this work? Evaluation Set Up

WMT Train English↔French(Fr) English↔German(De) Test: newstest2014+15 Google production English↔Japanese(Ja) English↔Korean(Ko) English↔Spanish(Es) English↔Portuguese(Pt) BLEU evaluation

BLEU scores in the "many to one" condition

Model			Multi	Diff
WMT German \rightarrow English (oversam	pling)	30.43	30.59	+0.16
WMT French \rightarrow English (oversam	pling)	35.50	35.73	+0.23
WMT German \rightarrow English (no oversam	pling)	30.43	30.54	+0.11
WMT French \rightarrow English (no oversam	pling)	35.50	36.77	+1.27
Prod Japanese→E	23.41	23.87	+0.46	
Prod Korean→E	25.42	25.47	+0.05	
Prod Spanish→E	38.00	38.73	+0.73	
Prod Portuguese→E	44.40	45.19	+0.79	
	Single lan pair base	guage eline	Multilingual model	

BLEU scores in the "one to many" condition

Model	Single	Multi	Diff
WMT English \rightarrow German (oversampling)	24.67	24.97	+0.30
WMT English \rightarrow French (oversampling)	38.95	36.84	-2.11
WMT English \rightarrow German (no oversampling)	24.67	22.61	-2.06
WMT English \rightarrow French (no oversampling)	38.95	38.16	-0.79
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Japanese}$	23.66	23.73	+0.07
${\rm Prod} \ {\rm English} {\rightarrow} {\rm Korean}$	19.75	19.58	-0.17
$\operatorname{Prod} \operatorname{English} \rightarrow \operatorname{Spanish}$	34.50	35.40	+0.90
${\rm Prod}~{\rm English}{\rightarrow} {\rm Portuguese}$	38.40	38.63	+0.23

BLEU scores in the "many to many" condition

Model	Single	Multi	Diff
WMT English \rightarrow German (oversampling)	24.67	24.49	-0.18
WMT English \rightarrow French (oversampling)	38.95	36.23	-2.72
WMT German \rightarrow English (oversampling)	30.43	29.84	-0.59
WMT French \rightarrow English (oversampling)	35.50	34.89	-0.61
WMT English \rightarrow German (no oversampling)	24.67	21.92	-2.75
WMT English \rightarrow French (no oversampling)	38.95	37.45	-1.50
WMT German \rightarrow English (no oversampling)	30.43	29.22	-1.21
WMT French \rightarrow English (no oversampling)	35.50	35.93	+0.43
Prod English→Japanese	23.66	23.12	-0.54
Prod English \rightarrow Korean	19.75	19.73	-0.02
$\operatorname{Prod} \operatorname{Japanese} \rightarrow \operatorname{English}$	23.41	22.86	-0.55
Prod Korean→English	25.42	24.76	-0.66
Prod English→Spanish	34.50	34.69	+0.19
$\mathbf{Prod} \ \mathbf{English} \rightarrow \mathbf{Portuguese}$	38.40	37.25	-1.15
$\operatorname{Prod} \operatorname{Spanish} \rightarrow \operatorname{English}$	38.00	37.65	-0.35
Prod Portuguese \rightarrow English	44.40	44.02	-0.38

Impact of model size in "many to many" condition

						-
Model	Single	Multi	Multi	Multi	Multi	
#nodes	1024	1024	1280	1536	1792	
#params	3B	255M	$367 \mathrm{M}$	$499 \mathrm{M}$	650M	
Prod English→Japanese	23.66	21.10	21.17	21.72	21.70	
Prod English \rightarrow Korean	19.75	18.41	18.36	18.30	18.28	
Prod Japanese \rightarrow English	23.41	21.62	22.03	22.51	23.18	
Prod Korean \rightarrow English	25.42	22.87	23.46	24.00	24.67	
$\mathbf{Prod} \ \mathbf{English} \rightarrow \mathbf{Spanish}$	34.50					
$\mathbf{Prod} \ \mathbf{English} \rightarrow \mathbf{Portuguese}$	38.40					
$\mathbf{Prod} \ \mathbf{Spanish} \rightarrow \mathbf{English}$	38.00 Fi	ndings sc	o far: mu	Itilingual	model	
Prod Portuguese \rightarrow English	44.40	• car	n improve	e translati	on qualit	y (BLEU) for low
Prod English \rightarrow German	26.43	res	ource lar	nguage pa	airs	
Prod English \rightarrow French	35.37	• rec	luce train	ing costs	compare	d to training one
Prod German \rightarrow English	31.77	mc	odel per la	anguage	oair, at nc	o (or little) loss ir
Prod French \rightarrow English	36.47	tra	nslation of	quality		
ave diff	-					
vs single	-					

ing one

loss in

Follow up work: evaluating multilingual models at scale

- 25+ billion sentence pairs
- from 100+ languages to and from English
- with 50+ billion parameters

Data distribution over language pairs

• Comparing against strong bilingual baselines

Follow up work: evaluating multilingual models at scale

Translation quality comparison of a single massively multilingual model against bilingual baselines that are trained for each one of the 103 language pairs.

- The multilingual model improves BLEU by 5 points (on average) for low-resource language pairs
- With multilingual and bilingual models of the same capacity (i.e. number of parameters)!
- Suggests that the multilingual model is able to transfer knowledge from high-resource to low-resource languages

Analysis: representations in multilingual model cluster by language family [Kudugunta et al. 2019]

Multilingual Machine Translation Summary

- A simple idea:
 - Shared model for all language pairs
 - Add a token to input to identify output language
- Improves BLEU for low-resource language pairs
- But open questions remain
 - How to train massive models efficiently?
 - What properties are transferred from one language to another?
 - Are there unwanted effects on translation output? Bias toward high-resource languages / dominant language families?

Multitask Models for Controlling MT Output Style

Case Study I: formality

Style Matters for Translation

TO IMPRO	VE ACCURACY, FILL OU	T THE OPTIONAL FIELDS BELOW	Business	from \$0.12 / word
Is it more "Hey Dude"	or "Dear Sir"?	one of the content	Order total	\$520.80
Informal Informal Friendly Business	rslator		Estimated delivery 15 h I agree to the Terms Quality Policy Updated on 03/16/201	ours. (?) s & Conditions and 7
Other ossible instructions	Voice Links	Casual, romantic, funny, serious etc. To your website, screen shots or other docs.	Payment method:	nfirm Order
	Purpose & Audience	This is going to my most important client etc.	View Fu	ull Quote

www.gengo.com

How to train?

Ideal training data doesn't occur naturally!

[Niv, Martindale & Carpuat, EMNLP 2017]

Formality in MT Corpora

Formal

delegates are kindly requested to bring their copies of documents to meetings .

in these centers , the children were fed ,
medically treated and rehabilitated on both
a physical and mental level .

there can be no turning back the clock

I just wanted to introduce myself [OpenSubs]

Informal

-yeah , bro , up top .

[OpenSubs]

[OpenSubs]

[UN]

[UN]

[Rao and Tetreault, 2018]

Formality Sensitive MT as Multitask Formality Transfer + MT

Multitask Formality Transfer + MT

• Model: shared encoder, shared decoder as in multilingual NMT [Johnson et al. 2017]

• Training objective: $\mathcal{L}_{MT} + \mathcal{L}_{FT}$ $\mathcal{L}_{FT} = \sum_{(\boldsymbol{X}, \boldsymbol{Y})} \log P(\boldsymbol{Y} | \boldsymbol{X}; \boldsymbol{\theta})$ $\mathcal{L}_{FT} = \sum_{(\boldsymbol{Y}_{\bar{\ell}}, \boldsymbol{Y}_{\ell})} \log P(\boldsymbol{Y}_{\ell} | \boldsymbol{Y}_{\bar{\ell}}, \ell; \boldsymbol{\theta})$

Formality Transfer MT Human Evaluation

Model	Formality Difference Range =[0,2]	Meaning Preservation Range = [0,3]
MultiTask	0.35	2.95
Phrase-based MT + formality reranking	0.05	2.97
[Niu & Carpuat 2017]		

300 samples per model3 judgments per sampleProtocol based on Rao & Tetreault

Multitask model makes more formality changes than re-ranking baseline

ReferenceRefrain from the commentary and respond to the question, ChiefToohey.

Formal	MultiTask	You need to be quiet and answer the question, Chief Toohey.
	Baseline	Please refrain from comment and just answer the question, the Tooheys's boss.
Informal	MultiTask	Shut up and answer the question, Chief Toohey.
	Baseline	Please refrain from comment and answer my question, Tooheys's boss.

Multitask model introduces more meaning errors than re-ranking baseline

	Reference	Try to file any additional motions as soon as you can.
Formal	MultiTask	You should try to introduce the sharks as soon as you can.
	Baseline	Try to introduce any additional requests as soon as you can.
Informal	MultiTask	Try to introduce sharks as soon as you can.
	Baseline	Try to introduce any additional requests as soon as you can.

Meaning errors can be addressed by introducing additional synthetic supervision [Niu, PhD thesis 2019]

Controlling Machine Translation formality via multitask learning

- A multitask formality transfer + MT model
- Can produce distinct formal/informal translations of same input
- Introduces more formality rewrites, while roughly preserving meaning, esp. with synthetic supervision

Details:

- Formality Style Transfer Within and Across Languages with Limited Supervision. Xing Niu, PhD Thesis 2019.
- Multi-task Neural Models for Translating Between Styles Within and Across Languages. Xing Niu, Sudha Rao & Marine Carpuat. COLING 2018.
- A Study of Style in Machine Translation: Controlling the Formality of Machine Translation Output. Xing Niu, Marianna Martindale & Marine Carpuat. EMNLP 2017.

Multitask Models for Controlling MT Output Style

Case Study II: Complexity

Our goal: control the complexity of MT output

To make machine translation output accessible to broader audiences

Es: El museo Mauritshuis abre una exposición dedicada a los autorretratos del siglo XVII.

En (grade 8): The Mauritshuis museum is staging an exhibition focused solely on 17th century self-portraits.

En (grade 3): The Mauritshuis museum is going to show self-portraits.

Our goal: control the complexity of MT output

Summary

What you should know

- Multitask sequence-to-sequence models
 - How they are defined and trained (loss function)
- A simple yet powerful approach that can be applied to many translation and related sequence-to-sequence tasks
 - Can help improve performance by sharing data from multiple tasks
 - Has been applied to multilingual MT, style controlled MT, among other tasks

Also in discussing recent research papers, we illustrated:

- Pros and cons of automatic vs. manual evaluation
- Experiment design and result interpretation