

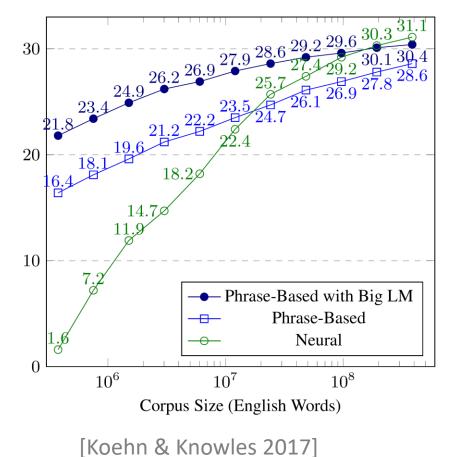
Neural machine translation with less supervision

CMSC 470

Marine Carpuat

Neural MT only helps in high-resource settings

BLEU Scores with Varying Amounts of Training Data



Ongoing research

- Learn from other sources of supervision than pairs (E,F)
 - Monolingual text
 - Multiple languages

Neural Machine Translation Standard Training is **Supervised**

- We are provided with pairs (x,y) where y ts the ground truth for each sample x
 - **x** = Chinese sentence
 - **y** = translation of **x** in English written by a human
- What is the training loss?

Unsupervised learning

- No labels for training samples
 - E.g., we are provided with Chinese sentences x, or English sentences y, but no (x,y) pairs

• Goal: uncover latent structure in unlabeled data

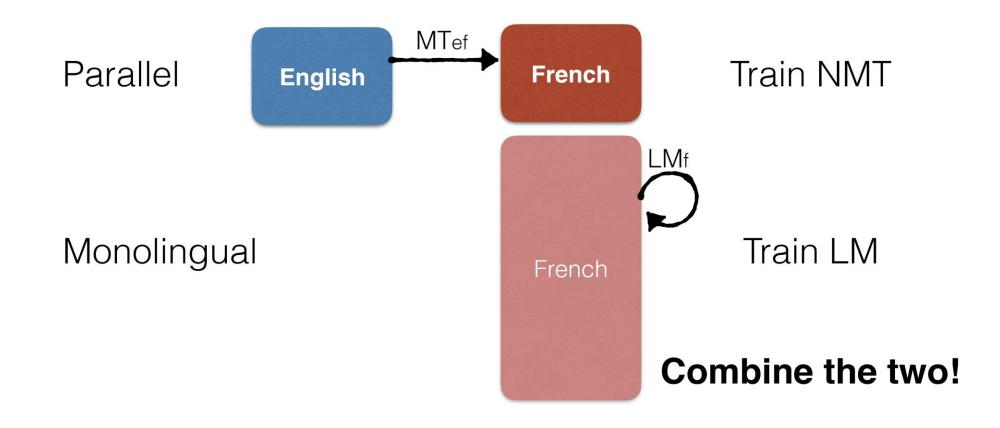
Semi-supervised learning

- Uses both annotated and unannotated data
 - (x,y) Chinese-English pairs
 - Chinese sentences **x**, and/or English sentences **y**

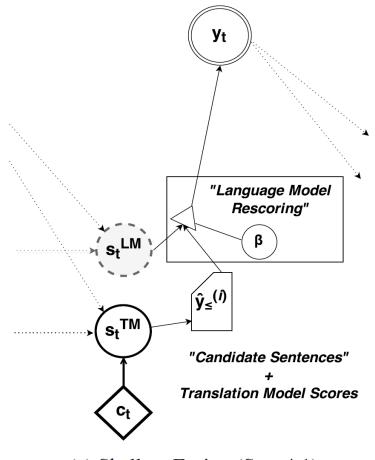
- Combines
 - Direct optimization of supervised training objective
 - Better modeling of data with cheaper unlabeled examples

Semi-supervised NMT

Using Monolingual Corpora in Neural Machine Translation [Gulcehre et al. 2015]



Slides credit: Antonis Anastasopoulos (CMU)



(a) Shallow Fusion (Sec. 4.1)

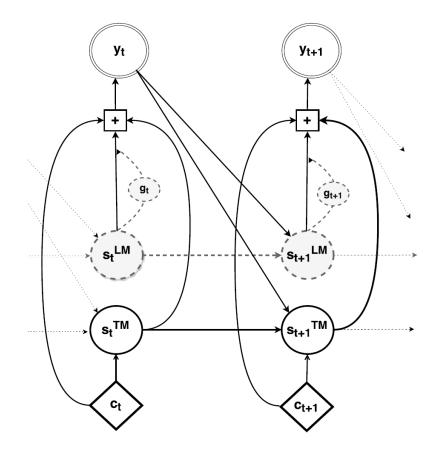
Approach 1: Shallow Fusion

Use a language model to rescore translation candidates from the NMT decoder

$$\log p(\mathbf{y}_t = k) = \log p_{\text{TM}}(\mathbf{y}_t = k) + \beta \log p_{\text{LM}}(\mathbf{y}_t = k),$$

Approach 2: Deep Fusion

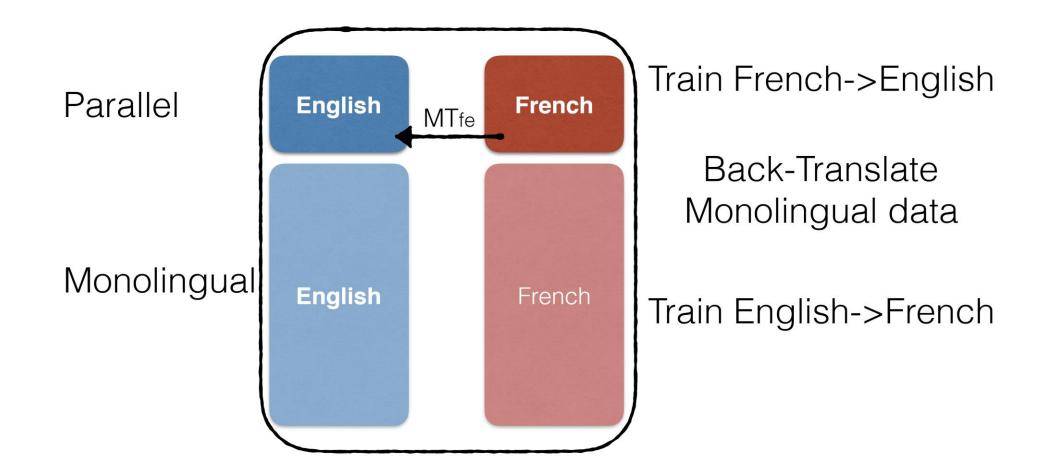
Integrate RNN language model and NMT model by concatenating their hidden states



(b) Deep Fusion (Sec. 4.2)

 $p(\mathbf{y}_t | \mathbf{y}_{< t}, \mathbf{x}) \propto \\ \exp(\mathbf{y}_t^{\top}(\mathbf{W}_o \mathbf{f}_o(\mathbf{s}_t^{\text{LM}}, \mathbf{s}_t^{\text{TM}}, \mathbf{y}_{t-1}, \mathbf{c}_t) + \mathbf{b}_o)).$

Using Monolingual Corpora via Backtranslation [Sennrich et al. 2015]



Backtranslation

• Pros

- Simple approach
- No additional parameters
- Cons
 - Computationally expensive
 - to train an auxiliary NMT model for back-translation
 - to translate large amounts of monolingual corpora

Combining Multilingual Machine Translation and Backtranslation [Niu et al. 2018]

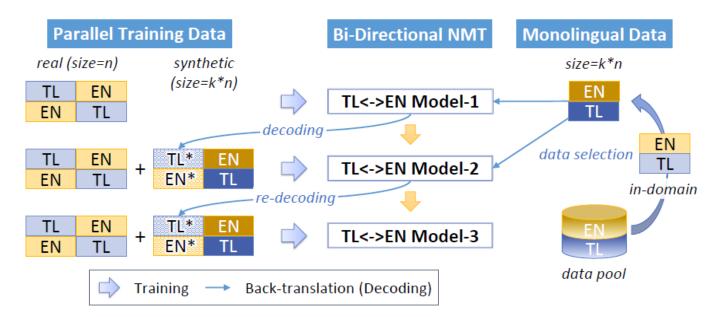


Figure 5.1: The framework of bi-directional NMT with synthetic parallel data. A bi-directional model (Model-1) is initialized on parallel data, and it translates select source and target monolingual data. Training is then continued on the augmented parallel data, leading to a cycle of improvement (\rightarrow Model-2 \rightarrow Model-3).

Experiments: 3 language pairs x 2 directions

Type	Dataset	# Sentences
High-resour	rce: German \leftrightarrow English	-
Training	Common Crawl +	
	Europarl v7 +	
	News Comm. v12	4,356,324
Dev	Newstest 2015+2016	5,168
Test	Newstest 2017	3,004
Mono-DE	News Crawl 2016	26,982,051
Mono-EN	News Crawl 2016	18,238,848
Low-resour	ce: Tagalog \leftrightarrow English	
Training	News/Blog	50,705
$\mathrm{Dev}/\mathrm{Test}$	News/Blog	491/508
$\mathrm{Dev}/\mathrm{Test}$	Bible	500/500
\mathbf{Sample}	Bible	61,195
Mono-TL	Common Crawl	26,788,048
Mono-EN	ICWSM 2009 blog	48,219,743
Low-resour	ce: Swahili⇔English	
Training	News/Blog	23,900
$\mathrm{Dev}/\mathrm{Test}$	News/Blog	491/509
Dev/Test	Bible	500/500
Sample	Bible	$14,\!699$
Mono-SW	Common Crawl	$12,\!158,\!524$
Mono-EN	ICWSM 2009 blog	48,219,743

Experiments: impact on BLEU

Uni-directional models

ID	Training Data	$TL \rightarrow EN$	$EN \rightarrow TL$	$SW \rightarrow EN$	${\tt EN}{\rightarrow}{\tt SW}$	$\text{DE} \rightarrow \text{EN}$	$EN \rightarrow DE$
U-1	L1→L2	31.99	31.28	32.60	39.98	29.51	23.01
U-2	$L1 \rightarrow L2 + L1 \ast \rightarrow L2$	24.21	29.68	25.84	38.29	33.20	25.41
U-3	$L1 \rightarrow L2 + L1 \rightarrow L2*$	22.13	27.14	24.89	36.53	30.89	23.72
U-4	$L1 \rightarrow L2 + L1 \ast \rightarrow L2 + L1 \rightarrow L2 \ast$	23.38	29.31	25.33	37.46	33.01	25.05
Bi-dir	ectional models						
ID	L1=EN	L2=	=TL	L2=	=SW	L2=	=DE
B-1	L1↔L2	32.72	31.66	33.59	39.12	28.84	22.45
B-2	$L1\leftrightarrow L2 + L1*\leftrightarrow L2$	32.90	32.33	33.70	39.68	29.17	24.45
B-3	$L1 \leftrightarrow L2 + L2 \ast \leftrightarrow L1$	32.71	31.10	33.70	39.17	31.71	21.71
B-4	$L1\leftrightarrow L2 + L1*\leftrightarrow L2 + L2*\leftrightarrow L1$	33.25	32.46	34.23	38.97	30.43	22.54
B-5	$L1 \leftrightarrow L2 + L1 \ast \rightarrow L2 + L2 \ast \rightarrow L1$	33.41	33.21	34.11	40.24	31.83	24.61
B-5f	$L1\leftrightarrow L2 + L1*\rightarrow L2 + L2*\rightarrow L1$	33.79	32.97	34.15	40.61	31.94	24.45
B-6f	$L1 \leftrightarrow L2 + \underline{L1*} \rightarrow L2 + \underline{L2*} \rightarrow L1$	34.50	33.73	34.88	41.53	32.49	25.20

Table 5.2: BLEU scores for uni-directional models (ID=U-k) and bi-directional NMT models (ID=B-k) trained on different combinations of real and synthetic parallel data. Models in B-5f are fine-tuned from base models in B-1. Best models in B-6f are fine-tuned from precedent models in B-5f and underscored synthetic data is re-decoded using precedent models. The highest score within each box is highlighted.

Experiments: impact on training updates

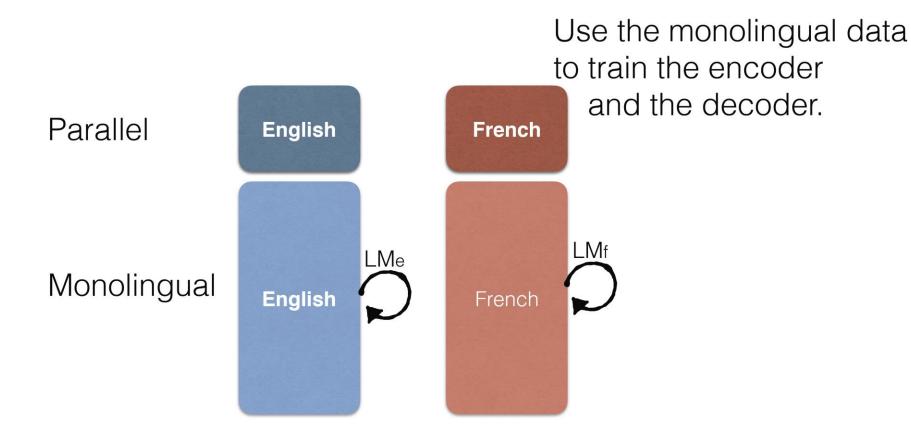
Mode	l	$TL \rightarrow EN$	$EN \rightarrow TL$	${\tt SW}{ ightarrow}{ m EN}$	${\tt EN}{ ightarrow}{\tt SW}$	$\text{DE} \rightarrow \text{EN}$	$\texttt{EN}{\rightarrow}\texttt{DE}$
	Baseline	76	78	63	66	41	48
Uni-directional	Synthetic	177	176	137	104	88	75
	TOTAL		507		371		252
	Baseline		125		93		61
Bi-directional	Synthetic		285		218		113
	TOTAL	$\downarrow 19\%$	410	$\downarrow 14\%$	311	$\downarrow 31\%$	174
(fine-tuning)	Synthetic	$\downarrow 23\%$	219	$\downarrow 44\%$	122	$\downarrow 24\%$	86

Table 5.3: Number of checkpoints (= |updates|/1000 for TL/SW \leftrightarrow EN or |updates|/10,000 for DE \leftrightarrow EN) used by various NMT models. Bi-directional models (with fine-tuning) reduce training time significantly.

Combining Multilingual Machine Translation and Backtranslation [Niu et al. 2018]

- A single NMT model with standard architecture performs both forward and backward translation during training
- Significantly reduces training costs compared to uni-directional systems
- Improves translation quality for low-resource language pairs

Another idea: use monolingual data to pretrain model components



Slides credit: Antonis Anastasopoulos (CMU)

Another idea: use monolingual data to pretrain model components

- Encoder can be pre-trained as language model
- Decoder can be pre-trained as language model
- Word embeddings can be pre-trained using word2vec or other objectives
- But impact is mixed in practice because of mismatch between pretraining and NMT objectives

3 strategies for semi-supervised neural MT

• Incorporate a target language model p(y) via shallow or deep fusion

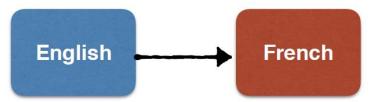
• Create synthetic pairs (x*,y) via backtranslation

• Pre-train encoder, decoder or embeddings on monolingual data x or y

Unsupervised NMT

Translation as decipherment

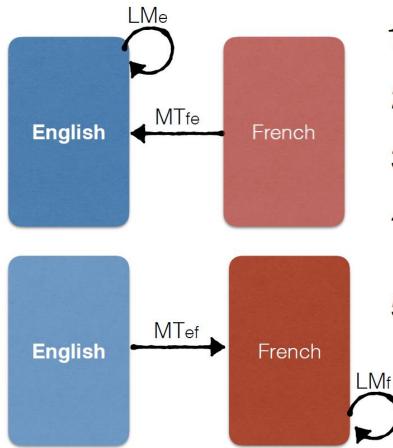
Weaver (1955): This is really English, encrypted in some strange symbols



$$\arg\max_{\theta} \prod_{f} \sum_{e} P(e) \cdot P_{\theta}(f|e)$$

Slides credit: Antonis Anastasopoulos (CMU)

Unsupervised Machine Translation [Lample et al.; Artetxe et al. 2018]



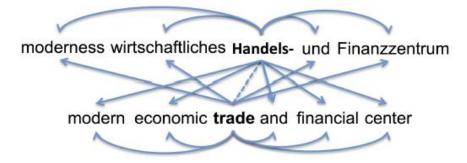
- 1. Embeddings + Unsup. BLI
- 2. BLI -> Word Translations
- 3. Train MT_{fe} and MT_{ef} systems
- 4. Meanwhile, use unsupervised objectives (denoising LM)

5. Iterate

Aside: (noisy) bilingual lexicons can be induced from bilingual embeddings

- One method: bilingual skipgram model
 - put words from 2 (or more) languages into the same embedding space
 - cosine similarity can be used to find translations in the 2nd language, in addition to similar/related words in the 1st language

Aside: (noisy) bilingual lexicons can be induced from bilingual embeddings



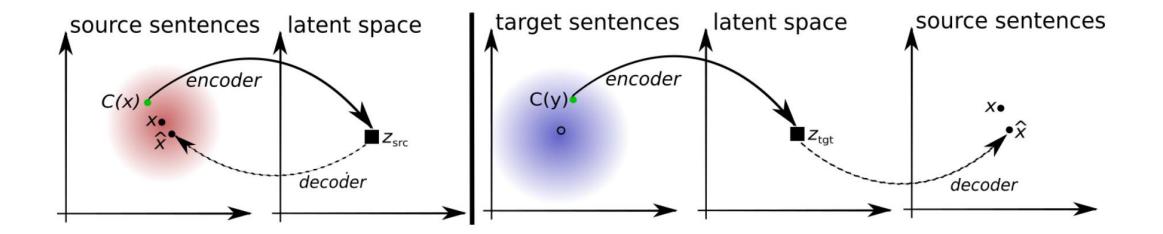
One approach: bilingual skipgram model

Requires word aligned parallel data

Skipgram embeddings are trained to predict

- Neighbors of words w1 in language 1 (e.g., German)
- Neighbors of words w2 in language 2 (e.g., English)
- Language 1 neighbors of word w1
- Language 1 neighbors of word w2

Unsupervised objectives intuition: auto-encoding + back-translation



Experiments

	MMT1 en-fr	MMT1 de-en	WMT en-fr	WMT de-en
Monolingual sentences	14.5k	14.5k	15M	1.8M
Vocabulary size	10k / 11k	19k / 10k	67k / 78k	80k / 46k

Table 1: Multi30k-Task1 and WMT datasets statistics. To limit the vocabulary size in the WMT en-fr and WMT de-en datasets, we only considered words with more than 100 and 25 occurrences, respectively.

Experiments

	Multi30k-Task1				WMT			
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en	en-de
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61	21.33
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42	7.06 6.70 11.57
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33	8.86 9.75 9.64

Table 2: BLEU score on the Multi30k-Task1 and WMT datasets using greedy decoding.

Experiments

Source	un homme est debout près d' une série de jeux vidéo dans un bar .
Iteration 0	a man is seated near a series of games video in a bar .
Iteration 1	a man is standing near a closeup of other games in a bar .
Iteration 2	a man is standing near a bunch of video video game in a bar .
Iteration 3	a man is standing near a bunch of video games in a bar .
Reference	a man is standing by a group of video games in a bar .
Source	une femme aux cheveux roses habillée en noir parle à un homme .
Iteration 0	a woman at hair roses dressed in black speaks to a man .
Iteration 1	a woman at glasses dressed in black talking to a man .
Iteration 2	a woman at pink hair dressed in black speaks to a man .
Iteration 3	a woman with pink hair dressed in black is talking to a man .
Reference	a woman with pink hair dressed in black talks to a man .
Source	une photo d' une rue bondée en ville .
Iteration 0	a photo a street crowded in city .
Iteration 1	a picture of a street crowded in a city .
Iteration 2	a picture of a crowded city street .
Iteration 3	a picture of a crowded street in a city .
Reference	a view of a crowded city street .

Table 3: **Unsupervised translations.** Examples of translations on the French-English pair of the Multi30k-Task1 dataset. Iteration 0 corresponds to word-by-word translation. After 3 iterations, the model generates very good translations.

Unsupervised neural MT

• Given a bilingual embeddings / translation lexicon, it is possible to train a neural MT system without examples of translated sentences!

- But current evidence is limited to simulations on high resource languages, and sometimes parallel data
 - Unclear how well results port to realistic low-resource scenarios