Neural Machine Translation: directions for improvement

CMSC 470
Marine Carpuat
How can we improve on state-of-the-art machine translation approaches?

• Model

• Training
 • Data
 • Objective
 • Algorithm
Addressing domain mismatch

Slides adapted from Kevin Duh [Domain Adaptation in Machine Translation, MTMA 2019]
Supervised training data is not always in the domain we want to translate!

- **Domain mismatch example:**
 - Training data consists of **Patent** sentences
 - Test sample is **Social Media**

- **Case 1: Test is not in input domain**
 - can translate technical words like “NMT”
 - no idea how to translate “OMG”

- **Case 2: Input-Output relation changes**
 - “CAT” translates to a word that means “Computer Aided Translation” rather than “Cute furry animal”
Example sentences (case 1):
which is Patent, TED, Subtitles, Europarl?

1. We live in a digital world, but we’re fairly analog creatures.
2. The tablets exhibit improved bioavailability of the active ingredient.
3. So, um... she’s kidding.
4. Resumption of the session
Example bitext (case 2)

Medicine (EMEA):
if you have severe depression, you must not use avonex. / no debe utilizar avonex si padece una depresión grave.

Parliament (Europarl):
the economic depression in europe has lasted at least ten years. / europa sufre una crisis económica desde hace, al menos, diez años.
Domain adaptation is an important practical problem in machine translation

• It may be expensive to obtain training sets that are both large and relevant to test domain
• So we often have to work with whatever we can!

<table>
<thead>
<tr>
<th>Relevance to test domain</th>
<th>Data Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
</tr>
<tr>
<td>Irrelevant</td>
<td></td>
</tr>
<tr>
<td>Relevant</td>
<td>✓</td>
</tr>
</tbody>
</table>
Possible strategies: “Continued Training” or “fine-tuning”

• Requires small in-domain parallel data

[Luong and Manning 2016]
Possible strategies: back-translation
Possible strategies: data selection

• Train a language model on data representative of test domain
 • N-gram count based model [Moore & Lewis 2010]
 • Neural model [Duh et al. 2013]
 • Neural MT model [Junczys-Dowmunt 2018]

• Use perplexity of LM on new data to measure distance from test domain
Possible strategies: different weights for different training samples

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen, Eiichiro Sumita. Instance Weighting for Neural Machine Translation Domain Adaptation. EMNLP 2017

\[J_{dw} = \lambda_{in} \sum_{(x,y) \in D_{in}} \log p(y|x) + \sum_{(x',y') \in D_{out}} \log p(y'|x'). \]

Boxing Chen, Colin Cherry, George Foster, Samuel Larkin. Cost Weighting for Neural Machine Translation Domain Adaptation. WNMT 2017

\[\theta^* = \arg \max_{\theta} \sum_{(x,y) \in D} (1 + p_d(x)) \log p(y|x; \theta) \]

\[p_d(x) = \sigma \left(\tanh \left(W^d r_x + b^d \right)^\top w^d \right) \]

where \(\sigma(x) = \frac{1}{1 + \exp(-x)} \)
How can we improve on state-of-the-art machine translation approaches?

• Model

• Training
 • Data
 • Objective
 • Algorithm
Beyond Maximum Likelihood Training
How can we improve NMT training?

• Assumption: References can substitute for predicted translations during training

• Our hypothesis: Modeling divergences between references and predictions improves NMT

Based on paper by Weijia Xu [NAACL 2019]
Exposure Bias: Gap Between Training and Inference

\begin{align*}
P(y|x) &= \prod_{t=1}^{T} p(y_t|\mathbf{y}_{<t}, x) \\
\text{Loss} &= \sum_{t=1}^{T} \log p(y_t|\mathbf{y}_{<t}, x)
\end{align*}
How to Address Exposure Bias?

• Because of exposure bias
 • Models don’t learn to recover from their errors
 • Cascading errors at test time

• Solution:
 • Expose models to their own predictions during training
 • But how to compute the loss when the partial translation diverges from the reference?
Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>

\[P = \text{choose randomly} \]
Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>

\[h_1 \]

\[P = \text{choose randomly} \]

[Revised diagram: We made dinner (Bengio et al., NeurIPS 2015)]
Existing Method: Scheduled Sampling

Reference: `<s> We made dinner </s>`

[Bengio et al., NeurIPS 2015]
Existing Method: Scheduled Sampling

Reference: `<s> We made dinner </s>`

J = log p(`We` | `<s>`, source)

[Bengio et al., NeurIPS 2015]
Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>

$$J = \log p(\text{"made"} \mid \langle s \rangle \text{We}, \text{source})$$

[Bengio et al., NeurIPS 2015]
Existing Method: Scheduled Sampling

Reference: \(<s>\) We made \textcolor{orange}{
dinner}\) \(</s>\)

Incorrect synthetic reference: “We will dinner”

\[J = \log p(\text{“dinner”} \mid \text{“<s> We will”, source}) \]

[Bengio et al., NeurIPS 2015]
Our Solution: Align Reference with Partial Translations

Reference: `<s>` We made dinner `</s>`

$a_1 \log p(`dinner` | `<s>` , source)

We make dinner
Our Solution: Align Reference with Partial Translations

Reference: <s> We made dinner </s>

Soft Alignment a_2

$$a_1 \log p(\text{“dinner”} | \text{“<s>”}, \text{source}) + a_2 \log p(\text{“dinner”} | \text{“<s> We”}, \text{source})$$
Our Solution: Align Reference with Partial Translations

Reference: `<s>` We made dinner </s>

We make dinner

```
\[ a_1 \log p(``dinner`` | `<s>`, source) + a_2 \log p(``dinner`` | `<s> We`, source) +
\]

\[ a_3 \log p(``dinner`` | `<s> We will`, source) \]

Soft Alignment \( a_3 \)
Our Solution: Align Reference with Partial Translations

Reference: <s> We made dinner </s>

We make dinner

\[
\begin{align*}
    a_1 \log p(\text{“dinner”} | “<s>”, \text{source}) + a_2 \log p(\text{“dinner”} | “<s> \text{ We}”, \text{source}) + \\
    a_3 \log p(\text{“dinner”} | “<s> \text{ We will}”, \text{source}) + a_4 \log p(\text{“dinner”} | “<s> \text{ We will make}”, \text{source})
\end{align*}
\]
Our Solution: Align Reference with Partial Translations

Reference: <s> We made dinner </s>

We make dinner

Soft Alignment

\[ a_i \propto \exp(\text{Embed}_{\text{dinner}} \cdot h_i) \]

\[ \begin{align*}
    a_1 \log p(\text{“dinner”} \mid \text{“<s>”}, \text{source}) + \\
    a_2 \log p(\text{“dinner”} \mid \text{“<s> We”}, \text{source}) + \\
    a_3 \log p(\text{“dinner”} \mid \text{“<s> We will”}, \text{source}) + \\
    a_4 \log p(\text{“dinner”} \mid \text{“<s> We will make”}, \text{source})
\end{align*} \]
Our Solution: Align Reference with PartialTranslations

Reference: `<s>` We made dinner `</s>`

Soft Alignment:

$$a_i \propto \exp(\text{Embed}_{\text{dinner}} \cdot h_i)$$

$$a_1 \log p(\text{“dinner”} | \text{“<s>”, source}) + a_2 \log p(\text{“dinner”} | \text{“<s> We”, source}) +$$

$$a_3 \log p(\text{“dinner”} | \text{“<s> We will”, source}) + a_4 \log p(\text{“dinner”} | \text{“<s> We will make”, source})$$
Training Objective

Ours:
Soft alignment between $y_t$ and $\tilde{y}_{<j}$

\[
J_{SA} = \sum_{(x,y) \in D} \sum_{t=1}^{T} \sum_{j=1}^{T'} a_{tj} \log p(y_t | \tilde{y}_{<j}, x)
\]

Scheduled Sampling:
Hard alignment by time index $t$

\[
J_{SS} = \sum_{(x,y) \in D} \sum_{t=1}^{T} \log p(y_t | \tilde{y}_{<t}, x)
\]
Training Objective

**Ours:**

Soft alignment between $y_t$ and $\tilde{y}_j$

$$J_{SA} = \sum_{(x,y) \in D} \sum_{t=1}^{T} \sum_{j=1}^{T'} \log a_{tj} \ p(y_t | \tilde{y}_j, x)$$

**Scheduled Sampling:**

Hard alignment by time index $t$

$$J_{SS} = \sum_{(x,y) \in D} \sum_{t=1}^{T} \log p(y_t | \tilde{y}_t, x)$$
Training Objective

**Ours:**

Soft alignment between $y_t$ and $\tilde{y}_j$

$$J_{SA} = \sum_{(x,y)\in D} \sum_{t=1}^{T} \sum_{j=1}^{T'} \log a_{tj} p(y_t \mid \tilde{y}_j, x)$$

Combined with maximum likelihood:

$$J = J_{SA} + J_{ML}$$

**Scheduled Sampling:**

Hard alignment by time index $t$

$$J_{SS} = \sum_{(x,y)\in D} \sum_{t=1}^{T} \log p(y_t \mid \tilde{y}_{<t}, x)$$
Experiments

- **Data**
  - IWSLT14 de-en
  - IWSLT15 vi-en

<table>
<thead>
<tr>
<th>Task</th>
<th>sentences (K)</th>
<th>vocab (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>train</td>
<td>dev</td>
</tr>
<tr>
<td>de-en</td>
<td>153.3</td>
<td>7.0</td>
</tr>
<tr>
<td>vi-en</td>
<td>121.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

- **Model**
  - Bi-LSTM encoder, LSTM decoder, multilayer perceptron attention
  - Differentiable sampling with Straight-Through Gumbel Softmax
  - Based on AWS sockeye
Our Method Outperforms Maximum Likelihood and Scheduled Sampling

![Bar chart showing BLEU scores for different language pairs with Our Method, Scheduled Sampling, Differentiable Scheduled Sampling, and Baseline.](chart.png)
Our Method Needs No Annealing

Scheduled sampling: BLEU drops when used without annealing!
Summary

Introduced a new training objective

1. Generate translation prefixes via differentiable sampling
2. Learn to align the reference words with sampled prefixes

Better BLEU than the maximum likelihood and scheduled sampling (de-en, en-de, vi-en)

Simple to train, no annealing schedule required
What you should know

• Lots of things can be done to improve neural MT even without changing the model architecture

• The domain of training data matters
  • Simple techniques can be used to measure distance from test domain
  • And to adapt model to domain of interest

• The standard maximum likelihood objective is suboptimal
  • It does not directly measure translation quality
  • It is based on reference translations only, so the model is not exposed to its own errors during training
  • Developing reliable alternatives is an active area of research