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How can we improve on state-of-the-art
machine translation approaches?

* Model

* Training
* Data
* Objective
* Algorithm



Addressing domain mismatch

Slides adapted from Kevin Duh [Domain Adaptation in
Machine Translation, MTMA 2019]



Supervised training data is not always in the
domain we want to translate!

* Domain mismatch example:
— Training data consists of Patent sentences
— Test sample is Social Media

 Case 1: Test is not in input domain
— can translate technical words like “NMT”
— no idea how to translate “OMG”

e Case 2: Input-Output relation changes

— “CAT” translates to a word that means “Computer
Aided Translation” rather than “Cute furry animal”



Example sentences (case 1):
which is Patent, TED, Subtitles, Europarl?

. We live in a digital world, but we’re fairly
analog creatures.

. The tablets exhibit improved bioavailability of
the active ingredient.

. So, um... she’s kidding.
. Resumption of the session



Example bitext (case 2)

Medicine (EMEA):
if you have severe depression, you must

not use avonex . / no debe utilizar
avonex si padece una depresidén grave

Parliament (Europarl):
the economic depression in europe has
lasted at least ten years . / europa
sufre una crisis econdmica desde hace ,
al menos , diez anos




Domain adaptation is an important practical
problem in machine translation

* It may be expensive to obtain training sets that are both large and
relevant to test domain

 So we often have to work with whatever we can!
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e Requires small in-domain parallel data
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Possible strategies: back-translation
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Possible strategies: data selection

* Train a language model on data
representative of test domain

- * N-gram count based model [Moore & Lewis 2010]
 Neural model [Duh et al. 2013]

 Neural MT model [Junczys-Dowmunt 2018]
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Possible strategies: different weights for
different training samples

Rui Wang, Masao Utiyama, Lemao Liu, Kehai Chen, Eiichiro Sumita. Instance
Weighting for Neural Machine Translation Domain Adaptation. EMINLP 2017

Jdw = Ain Z logp(y|x) + Z logp(y'|[X').
(x,y)GDin (x’ay,)EDout

Corpus level weight

Boxing Chen, Colin Cherry, George Foster, Samuel Larkin. Cost Weighting for Neural Machine
Translation Domain Adaptation. WNMT 2017
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How can we improve on state-of-the-art
machine translation approaches?

* Model

* Training
* Data
* Objective
* Algorithm



Beyond Maximum Likelihood
Training



How can we improve NMT training?

* Assumption: References can substitute for predicted
translations during training

* Our hypothesis: Modeling divergences between references
and predictions improves NMT

Based on paper by Weijia Xu [NAACL 2019]



https://www.aclweb.org/anthology/N19-1207/
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How to Address Exposure Bias?

* Because of exposure bias
* Models don’t learn to recover from their errors
* Cascading errors at test time

* Solution:
* Expose models to their own predictions during training

* But how to compute the loss when the partial translation
diverges from the reference?



Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s> @ = choose randomly

predict
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[Bengio et al., NeurlPS 2015]



Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s> @ = choose randomly
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Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>

[Bengio et al., NeurlPS 2015]



Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>
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[Bengio et al., NeurlPS 2015]



Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>
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<s> We will

J=log p(“made” | “<s> We”, source)

[Bengio et al., NeurlPS 2015]



Existing Method: Scheduled Sampling

Reference: <s> We made dinner </s>

[Bengio et al., NeurlPS 2015]
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Our Solution: Align Reference
with Partial Translations

Reference: <s> We made dinner </s>
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Our Solution: Align Reference
with Partial Translations

Reference: <s> We made dinner </s>
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Our Solution: Align Reference
with Partial Translations

Reference: <s> We made dinner </s>

/Noﬁ Alignment a;

hy ha hs hy
—> > > > >

) ) 1 1 D

<S> We will make dinner

aq logp(“dinner” | “<s>”, source) + a, logp(“dinner” | “<s> We”, source) +
a5 logp(“dinner” | “<s> We will”, source)



Our Solution: Align Reference
with Partial Translations
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a5 logp(“dinner” | “<s> We will”, source) + a4 logp(“dinner” | “<s> We will make”, source)



Our Solution: Align Reference
with Partial Translations

. Soft Alignment
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Our Solution: Align Reference
with Partial Translations

. Soft Alignment
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Training Objective

Ours: Scheduled Sampling:

Soft alignment between y; and y; Hard alignment by time index ¢
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Training Objective

Ours: Scheduled Sampling:

Soft alignment between y; and y; Hard alignment by time index ¢
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Training Objective

Ours: Scheduled Sampling:
Soft alignment between y; and y; Hard alignment by time index ¢
T
Jsa = Z Z lng arj p(ye | ¥<j x) Jss = Z Z log p(ye | V=i, x)
(x,y)ED t=1 j (x,y)ED t=1

Combined with maximum likelihood:
J =Jsa+/mL



Experiments

. Data
. IWSLT14 de-en

. IWSLT15 vi-en
Task sentences (K) vocab (K)
train dev test  srcC tgt

de-en 1533 70 6.8 113.5 533
vi-en 1213 15 1.3 239 500

. Model

.- Bi-LSTM encoder, LSTM decoder,

multilayer perceptron attention

. Differentiable sampling with Straight-

Through Gumbel Softmax

. Based on AWS sockeye



Our Method Outperforms Maximum
Likelihood and Scheduled Sampling
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Our Method Needs No Annealing

Scheduled sampling: BLEU drops when used without annealing!
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Summary

Introduced a new training objective

1. Generate translation prefixes via differentiable sampling
2. Learn to align the reference words with sampled prefixes

Better BLEU than the maximum likelihood and scheduled
sampling (de-en, en-de, vi-en)

Simple to train, no annealing schedule required



What you should know

* Lots of things can be done to improve neural MT even without changing
the model architecture

* The domain of training data matters
e Simple techniques can be used to measure distance from test domain
e And to adapt model to domain of interest

* The standard maximum likelihood objective is suboptimal
* |t does not directly measure translation quality

* It is based on reference translations only, so the model is not exposed to its own
errors during training

* Developing reliable alternatives is an active area of research



