Sequence Labeling Il

CMSC 470
Marine Carpuat

Recap: We know how to perform POS tagging
with structured perceptron

* An example of sequence labeling tasks

* Requires a predefined set of POS tags
* Penn Treebank commonly used for English
* Encodes some distinctions and not others

* Given annotated examples, we can address sequence labeling with
multiclass perceptron
* but computing the argmax naively is expensive
* constraints on the feature definition make efficient algorithms possible

We can view POS tagging as classification and
use the perceptron again!

J = argmax;y) w- ¢(x,7)

Algorithm 40 STRUCTUREDPERCEPTRONTRAIN(D, MaxIter)

w0 // initialize weights
. for iter = 1 ... MaxlIter do
for all (x,y) € D do

]

3
" i < argmaxgcy () w - ¢(x, §) // compute prediction
5 if y # y then

6 w+—w+P(x,y) —P(x,7) // update weights
7 end if

s end for

o« end for

o return w // return learned weights

Alesorithm from CIML chapter 17

Feature functions for sequence labeling

» Standard features of POS tagging

* Unary features: capture relationship
between input x and a single label in the
output sequencey

e e.g., “#times word w has been labeled with tag |
for all words w and all tags I”

x = “ monsters eat tasty bunnies “

* Markov features: capture relationship

Y = noun verb adj noun between adjacent labels in the output
sequence y

, “# times ta% | is adjacent to tag I’ in output
for all tagsland 1”

* Given these feature types, the size of the feature
vector is constant with respect to input length

Example from CIML chapter 17

Decomposability

* |f features decompose over the input sequence, then we
can decompose the perceptron score as follows

L
w - p(x,y) ZW*[_Zlcm(x,y)

L
Y w-¢i(x,y)
=

* This holds for unary and Markov features

Solving the argmax problem for sequences
efficiently with dynamic programming

* Possible when features
decompose over input

* We can represent the search
space as a trellis/lattice

* Any path represents a labeling of
input sentence

* Each edge receives a weight such
monsters eat tasty bunnies that adding weights along the path
corresponds to score for
input/ouput configuration

Defining the Viterbi lattice for our POS tagger
(assuming features from slide 4)

monsters

eat

tasty

bunnies

* Each node corresponds to one time

step (or position in the input
sequence) and one POS tag

* Each edge in the lattice connects from

time /to /[+1, and from tag k” to k

Defining the Viterbi lattice for our POS tagger
(assuming features from slide 4)

 When features decompose over input, we
can

* Define the score of the best path in
lattice up to and including position /
that labels the /-th word as k

&y = maxw - ¢y (x, o k)
Y111

monsters eat tasty bunnies

* And compute this score recursively
a1k < maxy (wp +w-Prg(x (. K k)]

Best prefix Score contribution of
up to | ending in k’ adding k to prefix

Xok — 0 Vk
Cox =D Vk

the score for any empty sequence is zero

M41k = MAXTW - ¢1.041(x, J o k)
1:1

Deriving the
rfecursion

Xok — 0 Vk
gO,k =0 Vk

the score for any empty sequence is zero

Mi+1k = THAXTO - ¢1.041(x, J o k)
1:1

) e r|V| n g t h e separate score of prefix from score of position |+1
‘ecuy rSIOn = n};ixw- ((Pl:;(x,y)#—q);ﬂ(x,yo}{))

Deriving the
rfecursion

Xok — 0 Vk
Cox =D Vk

the score for any empty sequence is zero

Mi+1k = THAXTO - ¢1.041(x, J o k)
1:1

separate score of prefix from score of position |+1
= ﬂglax w - ((Plzi(xfy) +@ra(x, go k))
1:/
distributive law over dot products

= ﬂylax {w Pra(x,) Fw-prq(x, G o k)}
1:/

Xok — 0 Vk
Cox =D Vk

the score for any empty sequence is zero

Mi+1k = THAXTO - ¢1.041(x, J o k)
1:1

) e r|V| n g t h e separate score of prefix from score of position |+1
‘ecuy rSIOn = n}}lﬁjxw- (@1;;(x,9)+¢;+1(x,90k))

distributive law over dot products

= HylaX {w Pra(x,) Fw-prq(x, G o k)}
1:/

separate out final label from prefix, call it K

— max max {w P (x, Yo k') + w~gb;+1(x,yok’ok)}

Y1 K

Xok — 0 Vk
Cox =D Vk

the score for any empty sequence is zero

Mi+1k = THAXTO - ¢1.041(x, J o k)
1:1

) e r|V| n g t h e separate score of prefix from score of position |+1
‘ecuy rSIOn = n}}lﬁjxw- (@1;;(x,9)+¢;+1(x,90k))

distributive law over dot products

= ﬂylax {w Pra(x,) Fw-prq(x, G o k)}
1:/

separate out final label from prefix, call it K

— max max {w P (x, Yo k') + w~gb;+1(x,yok’ok)}

Y1 K

swap order of maxes, and last term doesn’t depend on prefix

= max Hmax w - p1(x, 90 k’)}

K’ Y101

—0—w-471+1(x1<""kl’k>)}

Deriving the
rfecursion

Xok — 0 Vk
Cox =D Vk

the score for any empty sequence is zero

Mi+1k = THAXTO - ¢1.041(x, J o k)
1:1

separate score of prefix from score of position |+1

— maxw - ((Pl:;(%ﬁ) +¢ra(x go k))

Y11

distributive law over dot products

= ﬂylax {w Pra(x,) Fw-prq(x, G o k)}
1:/

separate out final label from prefix, call it K

— max max {w P (x, Yo k') + w~gb;+1(x,yok’ok)}

Y1 K

swap order of maxes, and last term doesn’t depend on prefix

= max Hmax w - p1(x, 90 k’)}

k' Y11
+w - prq(x, (.. ,k’,k))}

apply recursive definition

= max {Dé],kr +w- P41 (x/ < - . ,k’, k>)}

k!

The Viterbi
Algorithm

Runtime O(LK?)

Algorithm 42 ARGMAXFORSEQUENCES(x, w)

1

N

41

a

100

118

128

13:

14

L <+ LEN(x)

ajp <0, (x40, Vk=1...K, VI=0...L // initialize variables

forl=0...L-1do

fork=1...Kdo

a1k — maxy o +w-Prq(x, (.. kL k)] // recursion:
/I here, ¢y 1 (... k' k...) is the set of features associated with
// output position I + 1 and two adjacent labels k” and k at that position
(141 < the k" that achieves the maximum above // store backpointer

end for
end for
y < (0,0,...,0) // initialize predicted output to L-many zeros
Yy < argmax; oy /I extract highest scoring final label
for[=L-1...1do

Y @l,ym /l traceback ¢ based on y,_ 4
end for

return y // return predicted output

Key points in Viterbi algorithm

Compute score of best possible prefix up to [+1 ending in k recursively

Kp41k < Maxp [app +w - drpp(x, (... kLK)

Record backpointer to label k’ in position | that achieves the max

(141 = argmax {“w +w- P, (... K, kw

k’/

At the end, take max; a; ; as the score of the best output sequence

Follow backpointers to retrieve the argmax sequence

Recap: We know how to perform POS tagging
with structured perceptron

* An example of sequence labeling tasks

* Requires a predefined set of POS tags
* Penn Treebank commonly used for English
* Encodes some distinctions and not others

* Given annotated examples, we can address sequence labeling with
multiclass perceptron
* but computing the argmax naively is expensive

* constraints on the feature definition make efficient algorithms possible
e E.g, Viterbi algorithm

Note: one downside of the structured perceptron,
we’ve just seen is that all bad output sequences
are equally bad

e With 0-1 loss
10D (y,37) =10V (y,3;) = 1

* An alternative: minimize Hamming
Los

e gives a more nuanced evaluation of
output than 0-1 loss

monsters eat tasty bunnies
L
g(Ham) -~ — 1 A
Consider (v.9) E Y, #]
= |4, A, A A] Can be done with similar algorithms for
y2 =[N,V,N,N] training and argmax

Sequence labeling tasks

Many NLP tasks can be framed as sequence
labeling

* Information Extraction: detecting named entities
* E.g., names of people, organizations, locations

“Brendan Iribe, a co-founder of Oculus VR and a prominent
University of Maryland donor, is leaving Facebook four years after it

purchased his company.”

http://www.dbknews.com/2018/10/24/brendan-iribe-facebook-leaves-oculus-vr-umd-computer-
science/

Many NLP tasks can be framed as sequence
labeling

X = [Brendan, Iribe, “”, a, co-founder, of, Oculus, VR, and, a,

A A |

prominent, University, of, Maryland, donor, “”, is, leaving, Facebook,

o Il]

four, years, after, it, purchased, his, company, “

y = [B-PER, I-PER, O, O, O, O, B-ORG, I-ORG, O, O, O,B-ORG, I-ORGgG, I-
ORG, O, O, 0,B-ORG,0,0,0,0,0,0, 0, O]

“BlO” labeling scheme for named entity recognition

Many NLP tasks can be framed as sequence
labeling

* The same kind of BIO scheme can be used to tag other spans of
text

* Syntactic analysis: detecting noun phrase and verb phrases

* Semantic roles: detecting semantic roles (who did what to whom)

