

Sequence Labeling & Syntax

CMSC 470

Marine Carpuat

Recap: We know how to perform POS tagging with structured perceptron

- An example of sequence labeling tasks
- Requires a predefined set of POS tags
 - Penn Treebank commonly used for English
 - Encodes some distinctions and not others
- Given annotated examples, we can address sequence labeling with multiclass perceptron
 - but computing the argmax naively is expensive
 - constraints on the feature definition make efficient algorithms possible
 - E.g, Viterbi algorithm

Sequence labeling tasks

Beyond POS tagging

- Information Extraction: detecting named entities
 - E.g., names of people, organizations, locations

"Brendan Iribe, a co-founder of Oculus VR and a prominent University of Maryland donor, is leaving Facebook four years after it purchased his company."

http://www.dbknews.com/2018/10/24/brendan-iribe-facebook-leaves-oculus-vr-umd-computer-science/

x = [Brendan, Iribe, ",", a, co-founder, of, Oculus, VR, and, a, prominent, University, of, Maryland, donor, ",", is, leaving, Facebook, four, years, after, it, purchased, his, company, "."]

y = [B-PER, I-PER, O, O, O, O, B-ORG, I-ORG, O, O, O, O, B-ORG, I-ORG, I-ORG, O, O, O, B-ORG, O, O, O, O, O, O, O, O, O]

"BIO" labeling scheme for named entity recognition

- The same kind of BIO scheme can be used to tag other spans of text
 - Syntactic analysis: detecting noun phrase and verb phrases
 - Semantic roles: detecting semantic roles (who did what to whom)

- Other sequence labeling tasks
 - Language identification in code-switched text
 - "Ulikuwa ukiongea a lot of nonsense." (Swahili/English)
 - Metaphor detection
 - "he swam in a sea of diamonds"
 - "authority is a chair, it needs legs to stand"
 - "in Washington, people change dance partners frequently, but not the dance"
 - ...

Other algorithms for solving the argmax problem

Structured perceptron can be used for other structures than sequences

- The Viterbi algorithm we've seen is specific to sequences
 - Other argmax algorithms necessary for other structures (e.g. trees)
- Integer Linear Programming provides a general framework for solving the argmax problem

Argmax problem as an Integer Linear Program

• An integer linear program (ILP) is an optimization problem of the form

$\max_{z} a \cdot z \text{ subj. to linear constraints on } z$

- For a fixed vector a
- Example of integer constraint: $z_3 \in \{0, 1\}$
- Well-engineered solvers exist
 - e.g, Gurobi
 - Useful for prototyping
 - But general not as efficient as dynamic programming

Casting sequence labeling with Markov features as an ILP

• Step 1: Define variables z as binary indicator variables which encode an output sequence y

$$z_{l,k',k} = \mathbf{1}[\text{label } l \text{ is } k \text{ and label } l - 1 \text{ is } k']$$

• Step 2: Construct the linear objective function

$$a_{l,k',k} = \boldsymbol{w} \cdot \phi_l(\boldsymbol{x}, \langle \dots, k', k \rangle)$$

Casting sequence labeling with Markov features as an ILP

- Step 3: Define constraints to ensure a well-formed solution
 - Z's should be binary: for all I, k', k

 $z_{l,k',k} \in \{0,1\}$

• For a given position I, there is exactly one active z

$$\sum_{k} \sum_{k'} z_{l,k',k} = 1$$
 for all l

• The z's are internally consistent

$$\sum_{k'} z_{l,k',k} = \sum_{k''} z_{l+1,k,k''}$$
 for all l,k

What you should know

- POS tagging as an example of sequence labeling task
- Requires a predefined set of POS tags
 - Penn Treebank commonly used for English
 - Encodes some distinctions and not others
- How to train and predict with the structured perceptron
 - constraints on feature structure make efficient algorithms possible
 - Unary and markov features => Viterbi algorithm
- Extensions:
 - How to frame other problems as sequence labeling tasks
 - Viterbi is not the only way to solve the argmax: Integer Linear Programming is a more general solution

Syntax, Grammars & Parsing CMSC 470

Marine Carpuat

Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Syntax & Grammar

- Syntax
 - From Greek syntaxis, meaning "setting out together"
 - refers to the way words are arranged together.
- Grammar
 - Set of structural rules governing composition of clauses, phrases, and words in any given natural language
 - Descriptive, not prescriptive
 - Panini's grammar of Sanskrit ~2000 years ago

Syntax and Grammar

- Goal of syntactic theory
 - "explain how people combine words to form sentences and how children attain knowledge of sentence structure"
- Grammar
 - implicit knowledge of a native speaker
 - acquired without explicit instruction
 - minimally able to generate all and only the possible sentences of the language

Two views of syntactic structure

- Constituency (phrase structure)
 - Phrase structure organizes words in nested constituents
- Dependency structure
 - Shows which words depend on (modify or are arguments of) which on other words

Constituency

- Basic idea: groups of words act as a single unit
- Constituents form coherent classes that behave similarly
 - With respect to their internal structure: e.g., at the core of a noun phrase is a noun
 - With respect to other constituents: e.g., noun phrases generally occur before verbs

Constituency: Example

• The following are all noun phrases in English...

Harry the Horse	a high-class spot such as Mindy's
the Broadway coppers	the reason he comes into the Hot Box
they	three parties from Brooklyn

- Why?
 - They can all precede verbs
 - They can all be preposed/postposed

• ...

Grammars and Constituency

- For a particular language:
 - What are the "right" set of constituents?
 - What rules govern how they combine?
- Answer: not obvious and difficult
 - There are many different theories of grammar and competing analyses of the same data!

An Example Context-Free Grammar

Grammar Rules	Examples
$S \rightarrow NP VP$	I + want a morning flight
NP → Pronoun Proper-Noun Det Nominal Nominal → Nominal Noun	I Los Angeles a + flight morning + flight
Noun	flights
$VP \rightarrow Verb$	do
Verb NP	want + a flight
Verb NP PP	leave + Boston + in the morning
Verb PP	leaving + on Thursday
$PP \rightarrow Preposition NP$	from + Los Angeles

Parse Tree: Example

Dependency Grammars

- Context-Free Grammars focus on constituents
 - Non-terminals don't actually appear in the sentence
- In dependency grammar, a parse is a graph (usually a tree) where:
 - Nodes represent words
 - Edges represent dependency relations between words (typed or untyped, directed or undirected)

Example Dependency Parse

Dependency Grammars

 Syntactic structure = lexical items linked by binary asymmetrical relations called dependencies

Dependency Relations

Argument Dependencies	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier Dependencies	Description
tmod	temporal modifier
appos	appositional modifier
det	determiner
prep	prepositional modifier

Relation	Examples with <i>head</i> and dependent
NSUBJ	United canceled the flight.
DOBJ	United <i>diverted</i> the flight to Reno.
	We booked her the first flight to Miami.
IOBJ	We booked her the flight to Miami.
NMOD	We took the morning <i>flight</i> .
AMOD	Book the cheapest flight.
NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .
APPOS	United, a unit of UAL, matched the fares.
DET	The <i>flight</i> was canceled.
	Which <i>flight</i> was delayed?
CONJ	We <i>flew</i> to Denver and drove to Steamboat.
CC	We flew to Denver and drove to Steamboat.
CASE	Book the flight through Houston.
Figure 14.3	Examples of core Universal Dependency relations.

Universal Dependencies project

- Set of dependency relations that are
 - Linguistically motivated
 - Computationally useful
 - Cross-linguistically applicable [Nivre et al. 2016]

universaldependencies.org

Universal Dependencies Illustrated Parallel examples for English, Bulgarian, Czech & Swedish

https://universaldependencies.org/introduction.html

What you should know

- Syntax vs. Grammar
- Two views of syntactic structures
 - Context-Free Grammar vs. Dependency grammars
 - Can be used to capture various facts about the structure of language (but not all!)
- Dependency grammars
 - Definition of dependency links: head, dependent
 - Annotate an example given a set of dependency types
- How syntactic analysis can be used to define NLP tasks or features

• Next: how can we predict syntactic parses?