
Dependency Parsing

CMSC 470

Marine Carpuat

Dependency Grammars

• Syntactic structure = lexical items linked by binary asymmetrical
relations called dependencies

Example Dependency Parse

They hid the letter on the shelf

Compare with constituent parse… What’s the relation?

Dependencies
(usually) form a tree:
- Connected
- Acyclic
- Single-head

Universal Dependencies project

• Set of dependency relations that are
• Linguistically motivated

• Computationally useful

• Cross-linguistically applicable

[Nivre et al. 2016]

• 100+ dependency treebanks for more than 60 languages

universaldependencies.org

Universal Dependencies Illustrated
Parallel examples for English, Bulgarian, Czech & Swedish

https://universaldependencies.org/introduction.html

Universal Dependencies
Design principles

• UD needs to be satisfactory on linguistic analysis grounds for individual
languages.

• UD needs to be good for linguistic typology, i.e., providing a suitable basis for
bringing out cross-linguistic parallelism across languages and language families.

• UD must be suitable for rapid, consistent annotation by a human annotator.

• UD must be suitable for computer parsing with high accuracy.

• UD must be easily comprehended and used by a non-linguist, whether a language
learner or an engineer with prosaic needs for language processing. We refer to
this as seeking a habitable design, and it leads us to favor traditional grammar
notions and terminology.

• UD must support well downstream language understanding tasks (relation
extraction, reading comprehension, machine translation, …).

https://universaldependencies.org/introduction.html

Syntax in NLP

• Syntactic analysis can be useful in many NLP applications
• Grammar checkers
• Dialogue systems
• Question answering
• Information extraction
• Machine translation
• …

• Sequence models can go a long way but syntactic analysis is particularly
useful
• In low resource settings
• In tasks where precise output structure matters

Syntactic analysis can help NLP tasks by

Providing scaffolding for semantic
analysis (and representing or
resolving ambiguity)

After much economic progress over the
years, the country has…

The country, which has made much economic
progress over the years, still has…

Helping generalization (e.g., by
capturing long-distance dependencies)

Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs

Input: sentence

Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task

- very large output space

- with interdependent labels

2 dominant approaches: transition-based parsing and graph-based
parsing

Transition-based dependency parsing

• Builds on shift-reduce parsing
[Aho & Ullman, 1972]

• Configuration
• Stack
• Input buffer of words
• Set of dependency relations

• Goal of parsing
• find a final configuration where
• all words accounted for
• Relations form dependency tree

Defining Transitions

• Transitions
• Are functions that produce a new configuration given current configuration

• Parsing is the task of finding a sequence of transitions that leads from start state to
desired goal state

• Start state
• Stack initialized with ROOT node

• Input buffer initialized with words in sentence

• Dependency relation set = empty

• End state
• Stack and word lists are empty

• Set of dependency relations = final parse

Arc Standard Transition System defines 3 transition
operators [Covington, 2001; Nivre 2003]

SHIFT
• Remove word at head of input buffer
• Push it on the stack

LEFT-ARC
• create head-dependent relation

between word at top of stack and 2nd

word (under top)
• remove 2nd word from stack

RIGHT-ARC
• Create head-dependent relation

between word on 2nd word on stack
and word on top

• Remove word at top of stack

Arc standard transition systems

• Preconditions
• ROOT cannot have incoming arcs

• LEFT-ARC cannot be applied when ROOT is the 2nd element in stack

• LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

Transition-based Dependency Parser

Properties of this algorithm:
- Linear in sentence length
- A greedy algorithm
- Output quality depends on oracle

Exercise: find a sequence of transitions to
generate this parse

SHIFT
• Remove word at head of input buffer
• Push it on the stack

LEFT-ARC
• create head-dependent relation

between word at top of stack and 2nd

word (under top)
• remove 2nd word from stack

RIGHT-ARC
• Create head-dependent relation

between word on 2nd word on stack
and word on top

• Remove word at top of stack

Transition-Based Parsing Illustrated

Where do we get an oracle?

• Multiclass classification problem
• Input: current parsing state (e.g., current and previous configurations)

• Output: one transition among all possible transitions

• Q: size of output space?

• Supervised classifiers can be used
• E.g., perceptron

• Open questions
• What are good features for this task?

• Where do we get training examples?

Generating Training Examples

• What we have in a treebank • What we need to train an oracle
• Pairs of configurations and

predicted parsing action

Generating training examples

• Approach: simulate parsing to generate reference tree

• Given
• A current config with stack S, dependency relations Rc

• A reference parse (V,Rp)

• Do

Additional condition on
RightArc makes sure a
word is not removed from
stack before its been
attached to all its
dependent

Let’s try it out

Features

• Configuration consist of stack, buffer, current set of relations

• Typical features
• Features focus on top level of stack

• Use word forms, POS, and their location in stack and buffer

Features example

• Given configuration • Example of useful features

Features example

