Dependency Parsing

CMSC 470
Marine Carpuat

Dependency Grammars

e Syntactic structure = lexical items linked by binary asymmetrical
relations called dependencies

Dependency Type

!

Head Dependent
(modifier /object / compliment)

Example Dependency Parse

prep
dobj

nsubj detnn pcomp dObj
‘ ; |]’ \[\lr_l| BE2BK

India won the world cup by beating Lanka

Universal Dependencies project

* Set of dependency relations that are
* Linguistically motivated
* Computationally useful
e Cross-linguistically applicable
[Nivre et al. 2016]

* 100+ dependency treebanks for more than 60 languages

universaldependencies.org

Universal Dependencies lllustrated
Parallel examples for English, Bulgarian, Czech & Swedish

punct
obl
nsubj:pass icase
det aux:pass !'/ det

LEO Loa) tvea: oo [oers ™ ~wouns) e

1| The dog was chased by the cat :
punct»
nsubj:pass obl
expl:pass cas«\h

Ll ek - AN) lpuncT)

2 KY‘-IE!TO cec npecnegsawe or KOTKdATa .
nsubj:pass punct
g“ g«aux:pass oblvb—_\—
= —— .
3 Pes byl honén koCkou !
puncty
obl
nsubj:pass t):a_seh

[NOUN: | [ADP)" Ypuncr)

4| Hunden jagades av katten :

https://universaldependencies.org/introduction.html

UJniversal Dependencies
Design principles

* UD needs to be satisfactory on linguistic analysis grounds for individual
languages.

* UD needs to be good for linguistic typology, i.e., providing a suitable basis for
bringing out cross-linguistic parallelism across languages and language families.

* UD must be suitable for rapid, consistent annotation by a human annotator.
* UD must be suitable for computer parsing with high accuracy.

* UD must be easily comprehended and used by a non-linguist, whether a language
learner or an engineer with prosaic needs for language processing. We refer to
this as seeking a habitable design, and it leads us to favor traditional grammar
notions and terminology.

e UD must support well downstream language understanding tasks (relation
extraction, reading comprehension, machine translation, ...).

https://universaldependencies.org/introduction.html

Syntax in NLP

* Syntactic analysis can be useful in many NLP applications
 Grammar checkers
e Dialogue systems
* Question answering

Information extraction

Machine translation

e Sequence models can go a long way but syntactic analysis is particularly
useful

* In low resource settings
* |In tasks where precise output structure matters

Syntactic analysis can help NLP tasks by

After much economic progress over the
| saw a girl with a telescope years, the country has..

The country, which has made much economic
progress over the years, still has..

Providing scaffolding for semantic ~ Helping generalization (e.g., by
analysis (and representing or capturing long-distance dependencies)
resolving ambiguity)

Data-driven dependency parsing

Goal: learn a good predictor of dependency graphs
Input: sentence
Output: dependency graph/tree G = (V,A)

Can be framed as a structured prediction task
- very large output space
- with interdependent labels

2 dominant approaches: transition-based parsing and graph-based
parsing

Transition-based dependency parsing

| * Builds on shift-reduce parsing
nput buffer
1 - [Aho & Ullman, 1972]
e Configuration
211 * Stack
” f: Parser [————» "X one * Input buffer of words
Stack | - * Set of dependency relations
* Goal of parsing
on * find a final configuration where
— * all words accounted for

ISTNICEER] Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

* Relations form dependency tree

Defining Transitions

* Transitions
* Are functions that produce a new configuration given current configuration
* Parsing is the task of finding a sequence of transitions that leads from start state to
desired goal state
* Start state
 Stack initialized with ROOT node
* Input buffer initialized with words in sentence
* Dependency relation set = empty

 End state

e Stack and word lists are empty
* Set of dependency relations = final parse

Arc Standard Transition System defines 3 transition
operators [Covington, 2001; Nivre 2003]

SHIFT
Input buffer Remove word at head of input buffer
wi | we wn * Push it on the stack
LEFT-ARC
* create head-dependent relation
11 between word at top of stack and 2"
17 Parser | »i Dependency word (under top)
Stack * remove 2"¥ word from stack
ac
o RIGHT-ARC
* Create head-dependent relation
o between word on 2" word on stack

and word on top
IDTCERY Basic transition-based parser. The parser examines the top two elements of the °
stack and selects an action based on consulting an oracle that examines the current configura- Re MoveE WO rd at top Of StaCk

tion.

Arc standard transition systems

* Preconditions
 ROOT cannot have incoming arcs
* LEFT-ARC cannot be applied when ROOT is the 2"d element in stack
* LEFT-ARC and RIGHT-ARC require 2 elements in stack to be applied

Transition-based Dependency Parser

function DEPENDENCYPARSE(words) returns dependency tree

state <— {[root], [words], [] } ; initial configuration

while state not final
t < ORACLE(state) ; choose a transition operator to apply

state <— APPLY(t, state) ; apply it, creating a new state
return state

DTN CENY A generic transition-based dependency parser

Properties of this algorithm:
- Linear in sentence length

- A greedy algorithm
- Output quality depends on oracle

Exercise: find a sequence of transitions to

generate this parse

| root | @

Book me the morning flight

SHIFT

 Remove word at head of input buffer
* Push it on the stack

LEFT-ARC

* create head-dependent relation
between word at top of stack and 2nd
word (under top)

 remove 2" word from stack

RIGHT-ARC

* Create head-dependent relation
between word on 2" word on stack
and word on top

 Remove word at top of stack

Transition-Based Parsing Illustrated

root |

iobj

Book me the morning flight

Step Stack | Word List Action Relation Added
0 [root] | [book, me, the, morning, flight] SHIFT
1 [root, book] | [me, the, morning, flight] SHIFT
2 [root, book, me] | [the, morning, flight] RIGHTARC (book — me)
3 [root, book] | [the, morning, flight] SHIFT
4 [root, book, the] | [morning, flight] SHIFT
5 [root, book, the, morning] | [flight] SHIFT
6 [root, book, the, morning, flight] | [] LEFTARC | (morning < flight)
7 [root, book, the, flight] | [] LEFTARC (the + flight)
8 [root, book, flight] | [] RIGHTARC (book — flight)
9 [root, book] | [] RIGHTARC (root — book)
10 [root] | [] Done

1D CRENE Trace of a transition-based parse.

Where do we get an oracle?

e Multiclass classification problem
* Input: current parsing state (e.g., current and previous configurations)
e Output: one transition among all possible transitions
* Q: size of output space?

 Supervised classifiers can be used
* E.g., perceptron

* Open questions
 What are good features for this task?
* Where do we get training examples?

Generating Training Examples

e What we have in a treebank

nmod

(oo
e

Book the flight through Houston

predicted parsing action

* What we need to train an oracle
* Pairs of configurations and

Step Stack Word List Predicted Action

0 [root] [book, the, flight, through, houston] SHIFT

1 [root, book] [the, flight, through, houston] SHIFT

2 [root, book, the] [flight, through, houston] SHIFT

3 [root, book, the, flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston] SHIFT

5 [root, book, flight, through] [houston | SHIFT

6 [root, book, flight, through, houston] [] LEFTARC
7 [root, book, flight, houston | [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
9 [root, book] [] RIGHTARC
10 [root] [] Done

IBTNICBER] Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Generating training examples

* Approach: simulate parsing to generate reference tree

Additional condition on
e Given RightArc makes sure a

: . , word is not removed from
* A current config with stack S, dependency relations Rc stack before its been

* A reference parse (V,Rp) attached to all its
e DO dependent

LEFTARC(r): if (S rS2) € R,

RIGHTARC(r): if (STE I S[) - Rp and V', w .5‘.?.(5[r '.-L-*) - Rﬁ then (.9[r '.-1-*) =
R.

SHIFT: otherwise

Let’s try it out

LEFTARC(r): if (S1 7 S2) € R,

RIGHTARC(r): if (S2 7 S1) € R, and V', ws.r.(S; ' w) € R, then (S| 1/ w) €
R.

SHIFT: otherwise

| root |

Book the flight through Houston

Features

* Configuration consist of stack, buffer, current set of relations

* Typical features
* Features focus on top level of stack
e Use word forms, POS, and their location in stack and buffer

Features example

* Given configuration * Example of useful features
Stack Word buffer Relations (s1.w = flights, op = shift
[root, canceled, flights] | [to Houston] | (canceled — United) (s2.w = canceled, op = shift)
(flights — morning) (s1.t = NNS,op = shift)
(flights — the) (s2.t = VBD,op = shift)
(b1.w = to,op = shift)
(by.t =TO,0p = shift)
(s1.wt = flightsNNS,op = shift)

(s1t.s2t = NNSVBD, op = shift)

Features example

Source Feature templates

One word s;.w S1.t S1.wt
S>.W .1 A%
bi.w bi.w bo.wt
Two word s;.wosy.w S1.108)2.1 si.toby.w
S1.1 08y Wt SI.WOSH».WOSs>.I S1.WOS1.[085).1
S1.WOS1.108>.1 S1.WwWoS.t

IO ERY Standard feature templates for training transition-based dependency parsers.
In the template specifications s, refers to a location on the stack, b, refers to a location in the
word buffer, w refers to the wordform of the input, and ¢ refers to the part of speech of the
input.

