Dependency Parsing |l

CMSC 470
Marine Carpuat



Arc Standard Transition System defines 3 transition
operators [Covington, 2001; Nivre 2003]

SHIFT

Input buffer  Remove word at head of input buffer
wi | w wn * Push it on the stack

LEFT-ARC

( ‘ * create head-dependent relation
-1 between word at top of stack and 2@
il

A

Parser o Dependency | word (under top)

Stac -

* Create head-dependent relation
n between word on 2" word on stack

and word on top
DTG CBER]  Basic transition-based parser. The parser examines the top two elements of the °
stack and selects an action based on consulting an oracle that examines the current configura- Re move Wo rd atto p Of stac k

tion.




Transition-based Dependency Parser

function DEPENDENCYPARSE(words) returns dependency tree

state <— {[root], [words], [] } ; initial configuration

while state not final
t < ORACLE(state) ; choose a transition operator to apply

state <— APPLY(t, state) ; apply it, creating a new state
return state

DTN CENY A generic transition-based dependency parser

Properties of this algorithm:
- Linear in sentence length

- A greedy algorithm
- Output quality depends on oracle




Research highlight:
Dependency parsing with stack-LSTMs

* From Dyer et al. 2015: http://www.aclweb.org/anthology/P15-1033

e |dea
* Instead of hand-crafted feature

* Predict next transition using recurrent neural networks to learn
representation of stack, buffer, sequence of transitions


http://www.aclweb.org/anthology/P15-1033

Research highlight:
Dependency parsing with stack-LSTMs

" & i

Yo | Yo Y1 Yo Y1 yo
f 1 pop f f push T f f

> => =

1 1 1 1 (AN 1 1

Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the c;’s and h;’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

\
\ /




Research highlight:

T [ ame | T T ! T

an f decision was made ROOT

overhasty QZ
I «— REDUCE-LEFT(amod)

A «— SHIFT
5

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReL.U nonlinearity to produce the parser state embedding p;. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.



An Alternative to the Arc-
Standard Transition System



A weakness of arc-standard parsing

Right dependents cannot be attached to their head
until all their dependents have been attached

nmod

bj

N
f

Book the flight through Houston

Step Stack Word List Predicted Action
0 [root] [book, the, flight, through, houston] SHIFT
1 [root, book] [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the, flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston] SHIFT
5 [root, book, flight, through] [houston] SHIFT
6 [root, book, flight, through, houston] [1 LEFTARC
7 [root, book, flight, houston ] [ RIGHTARC
8 [root, book, flight] (] RIGHTARC
9 [root, book] (] RIGHTARC
10 [root] [1 Done

IUPOICNERY  Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.



Arc Eager Parsing

* LEFT-ARC

* Create head-dependent rel. between word at front
of buffer and word at top of stack

* pop the stack
* RIGHT-ARC

* Create head-dependent rel. between word on top of

stack and word at front of buffer
 Shift buffer head to stack Move dependent word to stack (so it
e SHIFT can serve as head of other words)

 Remove word at head of input buffer
* Push it on the stack

* REDUCE
* Pop the stack Pop words off the stack once they have
been assigned all their dependents




Arc Eager Parsing Example

Step Stack | Word List Action Relation Added
0 [root] | [book, the, flight, through, houston] | RIGHTARC (root — book)
1 [root, book] | [the, flight, through, houston] SHIFT
2 [root, book, the] | [flight, through, houston] LEFTARC (the + flight)
3 [root, book] | [flight, through, houston] RIGHTARC (book — flight)
4 [root, book, flight] | [through, houston] SHIFT
5 [root, book, flight, through] | [houston] LEFTARC | (through < houston)
6 [root, book, flight] | [houston] RIGHTARC | (flight — houston)
7 [root, book, flight, houston] | [] REDUCE
8 [root, book, flight] | [] REDUCE
9 [root, book] | [] REDUCE
10 [root] | [] Done

IDTICBENI] A processing trace of Book the flight through Houston using the arc-eager
transition operators.



Properties of transition-based
parsing algorithms



Trees & Forests

* A dependency tree is a graph satisfying the following conditions
* Root
* Single head
* No cycles
* Connectedness

* A dependency forest is a dependency graph satisfying
* Root
* Single head
* No cycles
* but not Connectedness



Properties of the transition-based
parsing algorithm we’ve seen

Soundness: For every complete transition sequence, the resulting
graph is a projective dependency forest

Completeness: For every projective dependency forest G, there is a
transition sequence that generates G

If we really want a tree rather than a forest, we can use a trick: add
links to ROOT from disconnected trees



Projectivity

* Arc from head to dependent is projective

* If there is a path from head to every word between head
and dependent

* Dependency tree is projective
e If all arcs are projective
* Or equivalently, if it can be drawn with no crossing edges



s this tree projective?

AuxP
Pred
Sb
Atr Aux”Z
] ‘ | ]

root VA nich je jen Jedna na kvalitu .
(out-of) (them) (is) (only) (one) (to) (quality)



s this tree projective?

I
ob nmoc
cle he

Book the ﬂlofht through Hom.ton

nmod

mod

[ )

JetBlue canceled our flight this morning which was already late




Projectivity

* Arc from head to dependent is projective

* If there is a path from head to every word between head and
dependent

* Dependency tree is projective
* If all arcs are projective
* Or equivalently, if it can be drawn with no crossing edges

* Projective trees make computation easier

* But most theoretical frameworks do not assume projectivity
* Need to capture long-distance dependencies, free word order



Arc-standard parsing can’t produce non-
projective trees

AuxP
Pred
Sb
Atr Aux”Z
] ‘ | ]

root VA nich je jen Jedna na kvalitu .
(out-of) (them) (is) (only) (one) (to) (quality)



Pred

Atr

o

[root 7] nich [je jen jedna na kvalitu ]
(out-of) (them) (is) (only) (one) (to) (quality)




How frequent are non-projective structures?

e Statistics from CoNLL shared task

* NPD = non projective dependencies
* NPS = non projective sentences

Language %NPD %NPS

Dutch 5.4 36.4
German 2.3 27.8
Czech 1.9 23.2
Slovene 1.9 22.2
Portuguese 1.3 18.9

Danish 1.0 15.6




How to deal with non-projectivity?
(1) change the transition system

Transition Preconditio
NP-Left,  (o|w;i|wk, wi|3,A) = (o|wk, wj|B, AU{(wj, r,w;)}) i #0
NP-Right, (o|wi|wk, w;|3,A) = (o|wi, wk|3, AU{(w;, r,wj)})

* Intuition

* Add new transitions
* That apply to 2"9 word of the stack
* Top word of stack is treated as context

[Attardi 2006]



How to deal with non-projectivity?
(2) pseudo-projective parsing

Intuition

* “projectivize” a non-
projective tree

* by creating new projective
arcs that can be

ROOT A hearing 15 scheduled on the issue today . transformed back into non-

projective arcs in a post-

processing step

PRED

ROOT A hearing 5 scheduled on the issue today



Dependency Parsing: what you should know

* Transition-based dependency parsing
* Shift-reduce parsing
* Transition systems: arc standard, arc eager
* Oracle algorithm: how to obtain a transition sequence given a tree
* How to construct a multiclass classifier to predict parsing actions
 What transition-based parsers can and cannot do

* That transition-based parsers provide a flexible framework that allows many
extensions

* such as RNNs vs feature engineering, non-projectivity (but | don’t expect you to
memorize these algorithms)

* Next: Graph-based dependency parsing



Graph-based Dependency Parsing



Directed Spanning Trees

» A directed spanning tree of a (multi-)digraph G = (V,A), is a
subgraph G’ = (V’, A’) such that:
V=V
A C A and |A] = |V/| -1
G’ is a tree (acyclic)

» A spanning tree of the following (multi-)digraphs
/ /
O=—001 QQ

= e
22



Dependency Parsing
as Finding the Maximum Spanning Tree

* Views parsing as finding the best directed spanning tree
* of multi-digraph that captures all possible dependencies in a sentence
* needs a score that quantifies how good a tree is

* Assume we have an arc factored model
i.e. weight of graph can be factored as sum or product of weights of its arcs

* Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us

e Recursive algorithm
* Naive implementation: O(n”3)



Chu-Liu-Edmonds illustrated
(for unlabeled dependency parsing)



Chu-Liu-Edmonds illustrated

» Find highest scoring incoming arc for each vertex

T0o0t

207 Tsquw 30

VAN

John __ 30 Mary

» If this is a tree, then we have found MST!!



Chu-Liu-Edmonds illustrated

» If not a tree, identify cycle and contract

» Recalculate arc weights into and out-of cycle

s

J.—-" SGE’U)I 30
\

f “John -~ Mary

\31/



Chu-Liu-Edmonds illustrated

/root 10 root 40
20 —\ 30 >
9 im"ﬂ\ \ Tr00t e - saw’j—- 30
ke John __ 30 0 __ Mary e W L e B
_./

» Outgoing arc weights

Equal to the max of outgoing arc over all vertexes in cycle
e.g., John — Mary is 3 and saw — Mary is 30



Chu-Liu-Edmonds illustrated

s 9 9
/ root 10 \ TOﬁO\
9 20" “saw 30 root LN D 30
L VAN N el saw ) N
John __ 30 0 __Mary 20 " “squ 30 AT e I
Qﬂ e ) \ | Jol/m - Mary
5 John 30 Mary S \31 /

» Incoming arc weights

» Equal to the weight of best spanning tree that includes head of
incoming arc, and all nodes in cycle

» root — saw — John is 40 (**)
root — John — saw is 29



» Thisis a tree and the MST for the contracted graph!!

———
Troot
\ il
el saw;
A g \
- . J5 ’,..-
-
John .~ Mary
-
\.._.."'"

» Go back up recursive call and reconstruct final graph



Chu-Liu-Edmonds algorithm

function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F«+[]

T'«+[]

score’ <[]

for eachv € Vdo
bestInEdge < argmax,_(, . e g Score[e]
F+F U bestinEdge
for each e=(1,v) € E do

score’[e]<—score[e] — score[bestinEdge]

if T=(V.F) is a spanning tree then return it
else
C+acyclein F
G’ < CONTRACT(G, O)
T’ + MAXSPANNINGTREE(G, root, score’)
T+ EXPAND(T’,C)
return I’

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

IO ERNR]  The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.



For C

ependency parsing, we will view arc

welg

nts as linear classifiers

Weight of arc from
head i to dependent j,
with label k

Wij

» Arc weights are a linear combination of features of the arc, f,

and a

corresponding weight vector w

» Raised to an exponent (simplifies some math ...)

» What

arc features?



Example of classifier features

PP

John saw Mary McGuire yesterday with his telescope

N V. N N R P PR N

» Features from [McDonald et al. 2005]:
|dentities of the words w; and w; and the label /

head=saw & dependent=with



Typical classifier features

* Word forms, lemmas, and parts of speech of the headword and its
dependent

* Corresponding features derived from the contexts before, after and
between the words

* Word embeddings
* The dependency relation itself
* The direction of the relation (to the right or left)

* The distance from the head to the dependent



