
Dependency Parsing II

CMSC 470

Marine Carpuat

Arc Standard Transition System defines 3 transition
operators [Covington, 2001; Nivre 2003]

SHIFT
• Remove word at head of input buffer
• Push it on the stack

LEFT-ARC
• create head-dependent relation

between word at top of stack and 2nd

word (under top)
• remove 2nd word from stack

RIGHT-ARC
• Create head-dependent relation

between word on 2nd word on stack
and word on top

• Remove word at top of stack

Transition-based Dependency Parser

Properties of this algorithm:
- Linear in sentence length
- A greedy algorithm
- Output quality depends on oracle

Research highlight:
Dependency parsing with stack-LSTMs
• From Dyer et al. 2015: http://www.aclweb.org/anthology/P15-1033

• Idea
• Instead of hand-crafted feature

• Predict next transition using recurrent neural networks to learn
representation of stack, buffer, sequence of transitions

http://www.aclweb.org/anthology/P15-1033

Research highlight:
Dependency parsing with stack-LSTMs

Research highlight:
Dependency parsing with stack-LSTMs

An Alternative to the Arc-
Standard Transition System

A weakness of arc-standard parsing

Right dependents cannot be attached to their head
until all their dependents have been attached

Arc Eager Parsing

• LEFT-ARC
• Create head-dependent rel. between word at front

of buffer and word at top of stack
• pop the stack

• RIGHT-ARC
• Create head-dependent rel. between word on top of

stack and word at front of buffer
• Shift buffer head to stack

• SHIFT
• Remove word at head of input buffer
• Push it on the stack

• REDUCE
• Pop the stack

Move dependent word to stack (so it
can serve as head of other words)

Pop words off the stack once they have
been assigned all their dependents

Arc Eager Parsing Example

Properties of transition-based
parsing algorithms

Trees & Forests

• A dependency tree is a graph satisfying the following conditions
• Root
• Single head
• No cycles
• Connectedness

• A dependency forest is a dependency graph satisfying
• Root
• Single head
• No cycles
• but not Connectedness

Properties of the transition-based
parsing algorithm we’ve seen

Soundness: For every complete transition sequence, the resulting
graph is a projective dependency forest

Completeness: For every projective dependency forest G, there is a
transition sequence that generates G

If we really want a tree rather than a forest, we can use a trick: add
links to ROOT from disconnected trees

Projectivity

•Arc from head to dependent is projective
• If there is a path from head to every word between head

and dependent

•Dependency tree is projective
• If all arcs are projective
• Or equivalently, if it can be drawn with no crossing edges

Is this tree projective?

Is this tree projective?

Projectivity

• Arc from head to dependent is projective
• If there is a path from head to every word between head and

dependent

• Dependency tree is projective
• If all arcs are projective
• Or equivalently, if it can be drawn with no crossing edges

• Projective trees make computation easier
• But most theoretical frameworks do not assume projectivity

• Need to capture long-distance dependencies, free word order

Arc-standard parsing can’t produce non-
projective trees

How frequent are non-projective structures?

• Statistics from CoNLL shared task
• NPD = non projective dependencies

• NPS = non projective sentences

How to deal with non-projectivity?
(1) change the transition system

• Intuition
• Add new transitions

• That apply to 2nd word of the stack

• Top word of stack is treated as context

[Attardi 2006]

How to deal with non-projectivity?
(2) pseudo-projective parsing

Intuition

• “projectivize” a non-
projective tree

• by creating new projective
arcs that can be
transformed back into non-
projective arcs in a post-
processing step

Dependency Parsing: what you should know

• Transition-based dependency parsing
• Shift-reduce parsing
• Transition systems: arc standard, arc eager
• Oracle algorithm: how to obtain a transition sequence given a tree
• How to construct a multiclass classifier to predict parsing actions
• What transition-based parsers can and cannot do
• That transition-based parsers provide a flexible framework that allows many

extensions
• such as RNNs vs feature engineering, non-projectivity (but I don’t expect you to

memorize these algorithms)

• Next: Graph-based dependency parsing

Graph-based Dependency Parsing
Slides credit: Joakim Nivre

Directed Spanning Trees

Dependency Parsing
as Finding the Maximum Spanning Tree

• Views parsing as finding the best directed spanning tree
• of multi-digraph that captures all possible dependencies in a sentence
• needs a score that quantifies how good a tree is

• Assume we have an arc factored model
i.e. weight of graph can be factored as sum or product of weights of its arcs

• Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us
• Recursive algorithm
• Naïve implementation: O(n^3)

Chu-Liu-Edmonds illustrated
(for unlabeled dependency parsing)

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds algorithm

For dependency parsing, we will view arc
weights as linear classifiers
Weight of arc from

head i to dependent j,
with label k

Example of classifier features

Typical classifier features

• Word forms, lemmas, and parts of speech of the headword and its
dependent

• Corresponding features derived from the contexts before, after and
between the words

• Word embeddings

• The dependency relation itself

• The direction of the relation (to the right or left)

• The distance from the head to the dependent

• …

