Dependency Parsing |l

CMSC 470
Marine Carpuat



Graph-based Dependency Parsing



Directed Spanning Trees

» A directed spanning tree of a (multi-)digraph G = (V,A), is a
subgraph G’ = (V’, A’) such that:
V=V
A C A and |A] = |V/| -1
G’ is a tree (acyclic)

» A spanning tree of the following (multi-)digraphs
/ /
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Dependency Parsing
as Finding the Maximum Spanning Tree

* Views parsing as finding the best directed spanning tree
* of multi-digraph that captures all possible dependencies in a sentence
* needs a score that quantifies how good a tree is

* Assume we have an arc factored model
i.e. weight of graph can be factored as sum or product of weights of its arcs

* Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us

e Recursive algorithm
* Naive implementation: O(n”3)



Chu-Liu-Edmonds illustrated
(for unlabeled dependency parsing)



Chu-Liu-Edmonds illustrated

» Find highest scoring incoming arc for each vertex
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» If this is a tree, then we have found MST!!



Chu-Liu-Edmonds illustrated

» If not a tree, identify cycle and contract

» Recalculate arc weights into and out-of cycle
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Chu-Liu-Edmonds illustrated
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» Outgoing arc weights

Equal to the max of outgoing arc over all vertexes in cycle
e.g., John — Mary is 3 and saw — Mary is 30



Chu-Liu-Edmonds illustrated
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» Incoming arc weights

» Equal to the weight of best spanning tree that includes head of
incoming arc, and all nodes in cycle

» root — saw — John is 40 (**)
root — John — saw is 29



» Thisis a tree and the MST for the contracted graph!!
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» Go back up recursive call and reconstruct final graph



Chu-Liu-Edmonds algorithm

function MAXSPANNINGTREE(G=(V,E), root, score) returns spanning tree

F«+[]

T'«+[]

score’ <[]

for eachv € Vdo
bestInEdge < argmax,_(, . e g Score[e]
F+F U bestinEdge
for each e=(1,v) € E do

score’[e]<—score[e] — score[bestinEdge]

if T=(V.F) is a spanning tree then return it
else
C+acyclein F
G’ < CONTRACT(G, O)
T’ + MAXSPANNINGTREE(G, root, score’)
T+ EXPAND(T’,C)
return I’

function CONTRACT(G, C) returns contracted graph

function EXPAND(T, C) returns expanded graph

IO ERNR]  The Chu-Liu Edmonds algorithm for finding a maximum spanning tree in a
weighted directed graph.



For C

ependency parsing, we will view arc

welg

nts as linear classifiers

Weight of arc from
head i to dependent j,
with label k

Wij

» Arc weights are a linear combination of features of the arc, f,

and a

corresponding weight vector w

» Raised to an exponent (simplifies some math ...)

» What

arc features?



Example of classifier features

PP

John saw Mary McGuire yesterday with his telescope

N V. N N R P PR N

» Features from [McDonald et al. 2005]:
|dentities of the words w; and w; and the label /

head=saw & dependent=with



Typical classifier features

* Word forms, lemmas, and parts of speech of the headword and its
dependent

* Corresponding features derived from the contexts before, after and
between the words

* Word embeddings
* The dependency relation itself
* The direction of the relation (to the right or left)

* The distance from the head to the dependent



How to score a graph G
using features?

Arc-factored model
assumption

By definition of arc weights
as linear classifiers

RN

G = argmax H Wé-{ — argmax H eWH(i.j.K)

GeT(Gy) (ij.K)eG

= argmax Z w-f(i.j. k)

GeT(Gx) (ij,k)EG

= argmax W - Z f(i.j, k)

Ge T{Gx)

GET(G) (1/1e6
= argmax log H eWF(7.j:K)

arg max w - f(G)
GeT(Gx)



Learning parameters with the Structured Perceptron

Training data: 7 = {(x¢, G¢) ‘t@l

1. w® =0 i=0

2. forn:1..N

3. for t : 1..T

4. Let G’ = argmaxg wl) - f(G’)
5. if G' £ G;

6. wlith) = wl) + f(G,) — f(G)
7. =141

8. return w'



This is the exact same perceptron algorithm as for
multiclass classification, sequence labeling

J = argmax;y ) w- ¢(x,7)

Algorithm 40 STRUCTUREDPERCEPTRONTRAIN(D, MaxIter)

w0 // initialize weights
. for iter = 1 ... MaxlIter do
for all (x,y) € D do

]

3
" i < argmaxgcy () w - ¢(x, §) // compute prediction
5 if y # y then

6 w+—w+P(x,y) —P(x,7) // update weights
7 end if

s end for

o« end for

o return w // return learned weights

Alesorithm from CIML chapter 17



Comparing dependency parsing algorithms

Transition-based Graph-based

* Locally trained * Globally trained

* Use greedy search algorithm e Use exact search algorithm

e Can define features over a rich e Can only define features over a
history of parsing decisions limited history of parsing

decisions to maintain arc-
factored assumption



Dependency Parsing: what you should know

* Interpreting dependency trees

* Transition-based dependency parsing

Shift-reduce parsing

Transition systems: arc standard, arc eager

Oracle algorithm: how to obtain a transition sequence given a tree
How to construct a multiclass classifier to predict parsing actions
What transition-based parsers can and cannot do

That transition-based parsers provide a flexible framework that allows many
extensions

* such as RNNs vs feature engineering, non-projectivity (but | don’t expect you to memorize
these algorithms)

* Graph-based dependency parsing
* Chu-Liu-Edmonds algorithm
e Stuctured perceptron



Parsing with
Context Free Grammars



Agenda

* Grammar-based parsing with CFGs
e CKY algorithm

* Dealing with ambiguity
* Probabilistic CFGs



Sample Grammar

Grammar Lexicon
S — NPVP Det — that | this | a
S — Aux NP VP Noun — book | flight | meal | money
S — VP Verb — book | include | prefer
NP — Pronoun Pronoun — 1| she | me
NP — Proper-Noun Proper-Noun — Houston | NWA
NP — Det Nominal Aiix — does
Nominal — Noun Preposition — from | to | on | near | through

Nominal — Nominal Noun
Nominal — Nominal PP

VP — Verb

VP — Verb NP

VP — Verb NP PP
VP — Verb PP

VP — VP PP

PP — Preposition NP



Grammar-based parsing: CKY



Grammar-based Parsing

* Problem setup
* Input: string and a CFG
* Output: parse tree assigning proper structure to input string

* “Proper structure”
* Tree that covers all and only words in the input
* Tree isrooted atan S
* Derivations obey rules of the grammar
e Usually, more than one parse tree...



Parsing Algorithms

* Two naive algorithms:
* Top-down search
* Bottom-up search

* A “real” algorithm:
* CKY parsing



Top-Down Search

e Observation
e trees must be rooted with an S node

* Parsing strategy
e Start at top with an S node
* Apply rules to build out trees
* Work down toward leaves



Bottom-Up Search

* Observation
* trees must cover all input words

* Parsing strategy
e Start at the bottom with input words
* Build structure based on grammar
* Work up towards the root S



Top-Down vs. Bottom-Up

* Top-down search
* Only searches valid trees
* But, considers trees that are not consistent with any of the words

e Bottom-up search
* Only builds trees consistent with the input
* But, considers trees that don’t lead anywhere



Parsing as Search

e Search involves controlling choices in the search space
* Which node to focus on in building structure
 Which grammar rule to apply

* General strategy: backtracking
* Make a choice, if it works out then fine
* If not, back up and make a different choice



Shared Sub-Problems

* Observation
* ambiguous parses still share sub-trees

 We don’t want to redo work that’s already been done
e Unfortunately, naive backtracking leads to duplicate work



Efficient Parsing with the CKY (Cocke Kasami
Younger) Algorithm

* Solution: Dynamic programming

* Intuition: store partial results in tables
* Thus avoid repeated work on shared sub-problems

* Thus efficiently store ambiguous structures with shared sub-
parts

 We'll cover one example
* CKY: roughly, bottom-up



CKY Parsing: CNF

* CKY parsing requires that the grammar consist of binary rules in
Chomsky Normal Form

e All rules of the form:

A—->BC
D—->w

* What does the tree look like?



CKY Parsing with Arbitrary CFGs

 What if my grammar has rules like VP - NP PP PP

* Problem: can’t apply CKY!

 Solution: rewrite grammar into CNF
* Introduce new intermediate non-terminals into the grammar



Sample Grammar

Grammar Lexicon
S — NPVP Det — that | this | a
S — Aux NP VP Noun — book | flight | meal | money
S — VP Verb — book | include | prefer
NP — Pronoun Pronoun — 1| she | me
NP — Proper-Noun Proper-Noun — Houston | NWA
NP — Det Nominal Aiix — does
Nominal — Noun Preposition — from | to | on | near | through

Nominal — Nominal Noun
Nominal — Nominal PP

VP — Verb

VP — Verb NP

VP — Verb NP PP
VP — Verb PP

VP — VP PP

PP — Preposition NP



CNF Conversion

Original Grammar CNF Version
S — NPVP S — NPVP
S — Aux NP VP S — XIVP
X1 — Aux NP
S — VP S — book | include | prefer
S — Verb NP
S — X2 PP
S — Verb PP
S — VPPP
NP — Pronoun NP — [I| she| me
NP — Proper-Noun NP — TWA | Houston
NP — Det Nominal NP — Det Nominal
Nominal — Noun Nominal — book | flight | meal | money
Nominal — Nominal Noun Nominal — Nominal Noun
Nominal — Nominal PP Nominal — Nominal PP
VP — Verb VP — Dbook | include | prefer
VP — Verb NP VP — Verb NP
VP — Verb NP PP VP — X2 PP
X2 — Verb NP
VP — Verb PP VP — Verb PP
VP — VP PP VP — VP PP
PP — Preposition NP PP — Preposition NP



CKY Parsing: Intuition

e ConsidertheruleD - w
* Terminal (word) forms a constituent
* Trivial to apply

* Consider the rule
* “If there is an A somewhere in the input, then there must be a B followed by a Cin the input”
 First, precisely define span [/, /]
* If Aspans fromitojin the input then there must be some k such that i<k<j
* Easy to apply: we just need to try different values for k




CKY Parsing: Table

* Any constituent can conceivably span [/, j ] for all 0<i<j<N, where N = length of
input string
* We need half of an N x N table to keep track of all spans

* Semantics of table: cell [/, j ] contains A iff A spansitojin the input string
* must be allowed by the grammar!

T

1-211-3]|14| 15| 1-6
2=-3 |24 |25 ] 2-6
341 35|36
4-5 | 4-6
5-6

FROM:

] = w] k] = O




CKY Parsing: Table-Filling

* In order for A to span [, ;]

* A—> BCisaruleinthe grammar,
and

e There mustbeaBin[i,k]andaC
in [ k, j ] for some i<k<j

e Operationally

* To apply rule A— BC, look for a B
in[i,k]andaCin[k,/]

* |n the table: look left in the row
and down in the column

FROM:

0-2

04

0-6

1-2

1-4

1-6

2-4

2-6

34

3-6

] = w] k] = O

4-6

5-6




CKY Parsing: Canonical Ordering

e Standard CKY algorithm:

* Fill the table a column at a time, from left to right, bottom to top

 Whenever we're filling a cell, the parts needed are already in the table (to the
left and below)

* Nice property: processes input left to right, word at a time



CKY Parsing: Ordering Illustrated

Book the flight through  Houston
S, VP, Verb S,VP,X2 S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal, Nominal
Noun
2,3 [2,4] [2,9]
Prep PP
[3.4] [3,5]
NP,
Proper-
Noun
|4,5|




CKY Algorithm

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) do
[mbfe[j— l,j]1<{A| A — words[j] € grammar} ]
for i —from j — 2 downto 0 do
for k—i+1to j—1do
tableli j] «— tableli j] U
{A|A — BC € grammar,

B € tableli, k]|,
C € tablelk, j]}




CKY: Example

Book the flight through  Houston
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
—

- : -

|1,2| [1,3] [1,4] [1,5]
Nominal

[2,5]

[2,3| [2,4]
Prep

[3,4] [3,5]

Filling column 5

Proper-
Noun




Ar

CKY: Example

Recall our CNF grammar:

Houston

{1
1l

1al Noun
1al PP

S — NPVP

S — X1VP

X1 — Aux NP

S — Dook | include | prefer

S — Verb NP

S — X2 PP

S — Verb PP

S — VPPP

NP — [I| she| me

NP — TWA | Houston

NP — Det Nominal

Nominal — book | flight | meal | money
Nominal — Nominal Noun

Nominal — Nominal PP

VP — book | include | prefer

VP — Verb NP

VP — X2 PP

X2 — Verb NP
VP — Verb PP
VP — VP PP
PP — Preposition NP

Book the flight through
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4]
Det NP
|1,2| [1,3] [1,4]
Nominal,
Noun

|2,3| [2,4]
Prep

N "y
U.I.U“I

[3,4] [3,5]
1 NP,
Proper-
Noun

F




CKY: Example

Recall our CNF grammar:

S — NPVP

S — XI1VP

X1 — Aux NP

S — Dook | include | prefer
S — Verb NP

S — X2 PP

S — Verb PP

S — VPPP

NP — [I| she| me

NP — TWA | Houston

NP — Det Nominal
Nominal — book | flight | meal | money
Nominal — Nominal Noun
Nominal — Nominal PP
VP — book | include | prefer
VP Verb NP

VP X2 PP

X2 — Verb NP

VP Verb PP

VP VP PP

PP Preposition NP

—

—

—

—

—

Book the flight through  Houston
S, VP, Verb) S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4] [0,5]
Det NP
|1,2| [1,3] [1,4] [1,5]
Nominal,
Noun
23 o4 |25
Prep <—— PP
[3,4] [3,5]
NP,
Proper-
Noun
4,5




CKY: Example _

the flight through  Houston




CKY: Example

Recall our CNF grammar:

1l Noun
1l PP

VP

S — NPVP

S — X1VP

X1 — Aux NP

S — book | include | prefer
S Verb NP

S X2 PP

S Verb PP

S VP PP

NP — I| she| me
NP — TWA | Houston
NP — Det Nominal

Ll

Nominal — book | flight | meal | money

Nominal — Nominal Noun
Nominal — Nominal PP

VP — book | include | prefer
VP — Verb NP

VP — X2 PP

X2 — Verb NP

VP — Verb PP

VP — VP PP

PP — Preposition NP

Book the flight through  Houston
S, VP, Verb, S,VP,X2
Nominal,
Noun
[0,1] [0,2] [0,3] [0,4]
Det < NP
[1,2] [1,3] [1.4] [115]
Nominal, Nominal
Noun
|2,3| [2,4] [2,5]
Prep PP
[3,4] [3,5]
.NP,
Proper-
Noun
|4,5|



CKY: Example

Book the flight through  Houston
S, VP, Verbie S4.VP, X2
Nominal, S,
Noun VP« S?’ VP
X2 <« 83
[0,1] [0,2] [0,3] [0.4] v
Det NP NP
[1,2] [1,3] [1,4] [1,5]
Nominal, Nomina
Noun
|2,3| [2,4] [2,5]
Prep PP
[3.,4] [3,5]
I NP,
Proper-
Noun

[4,5]




CKY Parsing: Recognize or Parse

* Recognizer
e Output is binary
e Can the complete span of the sentence be covered by an S symbol?

* Parser
* Qutput is a parse tree
* From recognizer to parser: add backpointers!



Ambiguity

* CKY can return multiple parse trees
* Plus: compact encoding with shared sub-trees
* Plus: work deriving shared sub-trees is reused
* Minus: algorithm doesn’t tell us which parse is correct!



Ambiguity

N

VP

NP
|

Pronoun Verb

I |

shot

dIl

S
NP VP
NP

/\ |
Pronoun
N | VP PP

Det

Nominal I s .
/\ Verb NP 1IN MYy pajamas
Nominal PP s
| shot Det Nominal
Noun  in my pajamas | |

| an Noun

elephant |
elephant



PROBABILISTIC Context-free
grammars



Simple Probability Model

* A derivation (tree) consists of the bag of grammar
rules that are in the tree

* The probability of a tree is the product of the probabilities
of the rules in the derivation.

P(T,S) = H P(rule(n))

nodecT



Rule Probabilities

* What's the probability of a rule?

e Start at the top...

* Atree should have an S at the top. So given that we know we need an 5, we
can ask about the probability of each particular S rule in the grammar:
P(particular rule | S)

* In general we need
for each rule in the grammar P(Ol —)ﬂ ‘ 0[)



Training the Model

* We can get the estimates we need from a treebank

Count(at — )  Count(o — [3)

_P o — o) = —
( lo) Z?Cnunt(ﬂt — ) Count(ot)

For example, to get the probability for a particular VP rule:

1. count all the times the rule is used

2. divide by the number of VPs overall.



Parsing (Decoding)

How can we get the best (most probable) parse for a given input?
1. Enumerate all the trees for a sentence
2. Assign a probability to each using the model

3. Return the argmax



Example

e Consider...
* Book the dinner flight

S
e
Vel"b/\NP
BJD’E‘T Det Nominal

the Nominal Noun

| |
Noun flight

dinner

S
|
VP
Verb NP NP
| P

_ |
Book Det Nominal Nominal
| | |

the Noun Noun

| |
dinner flight




Examples

* These trees consist of the following rules.

Rules P Rules P

S — VP .05 S — VP 05
VP —  Verb NP .20 VP — Verb NP NP .10
NP — Det Nominal .20 NP —  Det Nomuinal .20
Nominal — Nominal Noun .20 NP —  Nominal 15
Nominal — Noun 15 Nominal — Noun 75
Nominal — Noun 75

Verb — book 30 Verb — book 30
Det — the .60 Det — the .60
Noun — dinner 10 Noun — dinner 10
Noun — flights 40 Noun — flights 40

P(Tief:) = -05%.20%.20%.20%.75%.30 % .60 .10 % .40 = 2.2 x 10°°
P(Trigh:) = .05%.10%.20%.15%.75%.75%.30 %.60 % .10 % .40 = 6.1 107




Dynamic Programming

* Of course, as with normal parsing we don’t really want
to do it that way...

* Instead, we need to exploit dynamic programming
* For the parsing (as with CKY)

* And for computing the probabilities and returning the best
parse (as with Viterbi)



Probabilistic CKY

e Store probabilities of constituents in the table

* table[i,j,A] = probability of constituent A that spans positions i
through j in input

e If A is derived from the rule
* tableli,j,A] =
e Where

is the rule probability

and are already in the table given the way that
CKY operates

* Only store the MAX probability over all the A rules.



Probabilistic CKY

function PROBABILISTIC-CKY (words,grammar) returns most probable parse
and 1ts probability
for j«— from 1 to LENGTH(words) do
forall { A| A — words[j] € grammar}
table[j— 1, j,A]l«— P(A — wordsl[j])
for i —from j— 2 downto 0 do
for k—i+1to j—1do
forall {A|A — BC € grammar,
and tableli.k,B] > 0 and tablelk,j C] > 0}
if (table[ij,A] < P(A — BC) x table[i,k,B] x table[kj,C]) then

table[ij,A]«— P(A — BC) x table[i k,B] x table[k,j,C]
back[i j.Al+— {k.B.C}

return BUILD_TREE(back[1l, LENGTH(words), S]), table[1, LENGTH(words), S]




Grammar-based parsing with CFGs
summary

* CKY algorithm finds all the parses of a given sentence efficiently
e Using dynamic programming

* Probabilistic CFGs help deal with ambiguity

* Requires computing probability of rules based on their frequency in the training
data

* Lexicalized grammars help improve performance further



