
Dependency Parsing II

CMSC 470

Marine Carpuat

Graph-based Dependency Parsing
Slides credit: Joakim Nivre

Directed Spanning Trees

Dependency Parsing
as Finding the Maximum Spanning Tree

• Views parsing as finding the best directed spanning tree
• of multi-digraph that captures all possible dependencies in a sentence
• needs a score that quantifies how good a tree is

• Assume we have an arc factored model
i.e. weight of graph can be factored as sum or product of weights of its arcs

• Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us
• Recursive algorithm
• Naïve implementation: O(n^3)

Chu-Liu-Edmonds illustrated
(for unlabeled dependency parsing)

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds illustrated

Chu-Liu-Edmonds algorithm

For dependency parsing, we will view arc
weights as linear classifiers
Weight of arc from

head i to dependent j,
with label k

Example of classifier features

Typical classifier features

• Word forms, lemmas, and parts of speech of the headword and its
dependent

• Corresponding features derived from the contexts before, after and
between the words

• Word embeddings

• The dependency relation itself

• The direction of the relation (to the right or left)

• The distance from the head to the dependent

• …

How to score a graph G
using features?

Arc-factored model
assumption

By definition of arc weights
as linear classifiers

Learning parameters with the Structured Perceptron

This is the exact same perceptron algorithm as for
multiclass classification, sequence labeling

=

Algorithm from CIML chapter 17

Comparing dependency parsing algorithms

Transition-based

• Locally trained

• Use greedy search algorithm

• Can define features over a rich
history of parsing decisions

Graph-based

• Globally trained

• Use exact search algorithm

• Can only define features over a
limited history of parsing
decisions to maintain arc-
factored assumption

Dependency Parsing: what you should know

• Interpreting dependency trees
• Transition-based dependency parsing

• Shift-reduce parsing
• Transition systems: arc standard, arc eager
• Oracle algorithm: how to obtain a transition sequence given a tree
• How to construct a multiclass classifier to predict parsing actions
• What transition-based parsers can and cannot do
• That transition-based parsers provide a flexible framework that allows many

extensions
• such as RNNs vs feature engineering, non-projectivity (but I don’t expect you to memorize

these algorithms)

• Graph-based dependency parsing
• Chu-Liu-Edmonds algorithm
• Stuctured perceptron

Parsing with
Context Free Grammars

Agenda

• Grammar-based parsing with CFGs
• CKY algorithm

• Dealing with ambiguity
• Probabilistic CFGs

Sample Grammar

Grammar-based parsing: CKY

Grammar-based Parsing

• Problem setup
• Input: string and a CFG

• Output: parse tree assigning proper structure to input string

• “Proper structure”
• Tree that covers all and only words in the input

• Tree is rooted at an S

• Derivations obey rules of the grammar

• Usually, more than one parse tree…

Parsing Algorithms

• Two naive algorithms:
• Top-down search

• Bottom-up search

• A “real” algorithm:
• CKY parsing

Top-Down Search

• Observation
• trees must be rooted with an S node

• Parsing strategy
• Start at top with an S node

• Apply rules to build out trees

• Work down toward leaves

Bottom-Up Search

• Observation
• trees must cover all input words

• Parsing strategy
• Start at the bottom with input words

• Build structure based on grammar

• Work up towards the root S

Top-Down vs. Bottom-Up

• Top-down search
• Only searches valid trees

• But, considers trees that are not consistent with any of the words

• Bottom-up search
• Only builds trees consistent with the input

• But, considers trees that don’t lead anywhere

Parsing as Search

• Search involves controlling choices in the search space
• Which node to focus on in building structure

• Which grammar rule to apply

• General strategy: backtracking
• Make a choice, if it works out then fine

• If not, back up and make a different choice

Shared Sub-Problems

• Observation
• ambiguous parses still share sub-trees

• We don’t want to redo work that’s already been done

• Unfortunately, naïve backtracking leads to duplicate work

Efficient Parsing with the CKY (Cocke Kasami
Younger) Algorithm

• Solution: Dynamic programming

• Intuition: store partial results in tables
• Thus avoid repeated work on shared sub-problems

• Thus efficiently store ambiguous structures with shared sub-
parts

• We’ll cover one example
• CKY: roughly, bottom-up

CKY Parsing: CNF

• CKY parsing requires that the grammar consist of binary rules in
Chomsky Normal Form
• All rules of the form:

• What does the tree look like?

A → B C
D → w

CKY Parsing with Arbitrary CFGs

• What if my grammar has rules like VP → NP PP PP
• Problem: can’t apply CKY!

• Solution: rewrite grammar into CNF
• Introduce new intermediate non-terminals into the grammar

A B C D
A X D
X B C

(Where X is a symbol that doesn’t
occur anywhere else in the
grammar)

Sample Grammar

CNF Conversion
Original Grammar CNF Version

CKY Parsing: Intuition

• Consider the rule D → w
• Terminal (word) forms a constituent

• Trivial to apply

• Consider the rule A → B C
• “If there is an A somewhere in the input, then there must be a B followed by a C in the input”

• First, precisely define span [i, j]

• If A spans from i to j in the input then there must be some k such that i<k<j

• Easy to apply: we just need to try different values for k

A

B C

i j

k

CKY Parsing: Table

• Any constituent can conceivably span [i, j] for all 0≤i<j≤N, where N = length of
input string
• We need half of an N × N table to keep track of all spans

• Semantics of table: cell [i, j] contains A iff A spans i to j in the input string
• must be allowed by the grammar!

CKY Parsing: Table-Filling
• In order for A to span [i, j]

• A B C is a rule in the grammar,
and

• There must be a B in [i, k] and a C
in [k, j] for some i<k<j

• Operationally
• To apply rule A B C, look for a B

in [i, k] and a C in [k, j]

• In the table: look left in the row
and down in the column

CKY Parsing: Canonical Ordering

• Standard CKY algorithm:
• Fill the table a column at a time, from left to right, bottom to top

• Whenever we’re filling a cell, the parts needed are already in the table (to the
left and below)

• Nice property: processes input left to right, word at a time

CKY Parsing: Ordering Illustrated

CKY Algorithm

CKY: Example

Filling column 5

?

?

?

?

CKY: Example
Recall our CNF grammar:

?

?

?

?

CKY: Example

?

?

?
Recall our CNF grammar:

CKY: Example

?

?

CKY: Example

?

Recall our CNF grammar:

CKY: Example

CKY Parsing: Recognize or Parse

• Recognizer
• Output is binary

• Can the complete span of the sentence be covered by an S symbol?

• Parser
• Output is a parse tree

• From recognizer to parser: add backpointers!

Ambiguity

• CKY can return multiple parse trees
• Plus: compact encoding with shared sub-trees

• Plus: work deriving shared sub-trees is reused

• Minus: algorithm doesn’t tell us which parse is correct!

Ambiguity

PROBABILISTIC Context-free
grammars

Simple Probability Model

• A derivation (tree) consists of the bag of grammar
rules that are in the tree
• The probability of a tree is the product of the probabilities

of the rules in the derivation.

Rule Probabilities

• What’s the probability of a rule?

• Start at the top...
• A tree should have an S at the top. So given that we know we need an S, we

can ask about the probability of each particular S rule in the grammar:
P(particular rule | S)

• In general we need

for each rule in the grammar

P(|)

Training the Model

• We can get the estimates we need from a treebank

For example, to get the probability for a particular VP rule:

1. count all the times the rule is used

2. divide by the number of VPs overall.

Parsing (Decoding)

How can we get the best (most probable) parse for a given input?

1. Enumerate all the trees for a sentence

2. Assign a probability to each using the model

3. Return the argmax

Example

• Consider...
• Book the dinner flight

Examples

• These trees consist of the following rules.

Dynamic Programming

• Of course, as with normal parsing we don’t really want
to do it that way...

• Instead, we need to exploit dynamic programming
• For the parsing (as with CKY)

• And for computing the probabilities and returning the best
parse (as with Viterbi)

Probabilistic CKY
• Store probabilities of constituents in the table

• table[i,j,A] = probability of constituent A that spans positions i
through j in input

• If A is derived from the rule A B C :
• table[i,j,A] = P(A B C | A) * table[i,k,B] * table[k,j,C]

• Where
• P(A B C | A) is the rule probability

• table[i,k,B] and table[k,j,C] are already in the table given the way that
CKY operates

• Only store the MAX probability over all the A rules.

Probabilistic CKY

Grammar-based parsing with CFGs
summary

• CKY algorithm finds all the parses of a given sentence efficiently
• Using dynamic programming

• Probabilistic CFGs help deal with ambiguity
• Requires computing probability of rules based on their frequency in the training

data

• Lexicalized grammars help improve performance further

