
Introduction to Natural
Language Processing

CMSC 470

Marine Carpuat

Final Exam

• Friday December 13, 1:30-3:30pm, EGR 1104

• You can bring one sheet of notes (double sided okay)

• Exam structure
• True/False or short answer problem similar to homework quizzes
• 2 or 3 longer problems where you are expected to show your work

• Cumulative exam, but with more focus on topics covered after the
midterm

Topics

• Words and their meanings
• Distributional semantics and word sense disambiguation
• Fundamentals of supervised classification

• Sequences
• N-gram and neural language models
• Sequence labeling tasks
• Structured prediction and search algorithms

• Application: Machine Translation

• Trees
• Syntax and grammars
• Parsing

What you should know:
Dense word embeddings
• Dense vs. sparse word embeddings

• How to generating word embeddings with Word2vec
• Skip-gram model
• Training

• How to evaluate word embeddings
• Word similarity
• Word relations
• Analysis of biases

What you should know
Machine Translation
• Context: Historical Background

• Machine Translation is an old idea, its history mirrors history of AI
• Why is machine translation difficult?

• Translation ambiguity
• Word order changes across languages

• Translation model history: rule-based -> statistical -> neural

• Machine Translation Evaluation
• What are adequacy and fluency
• Pros and cons of human vs automatic evaluation
• How to compute automatic scores: Precision/Recall and BLEU

What you should know:
Recurrent Neural Network Languge Models
• Mathematical definition of an RNN language model

• How to train them

• Their strengths and weaknesses
• Have all the strengths of feedforward language model

• And do a better job at modeling long distance context

• However
• Training is trickier due to vanishing/exploding gradients

• Performance on test sets is still sensitive to distance from training data

What you should know:
Neural Machine Translation
• How to formulate machine translation as a sequence-to-sequence

transformation task
• How to model P(E|F) using RNN encoder-decoder models, with and

without attention
• Algorithms for producing translations

• Ancestral sampling, greedy search, beam search

• How to train models
• Computation graph, batch vs. online vs. minibatch training

• Examples of weaknesses of neural MT models and how to address them
• Bidirectional encoder, length bias

• Determine whether a NLP task can be addressed with neural sequence-to-
sequence models

What you should know:
POS tagging & sequence labeling
• POS tagging as an example of sequence labeling task

• Requires a predefined set of POS tags
• Penn Treebank commonly used for English

• Encodes some distinctions and not others

• How to train and predict with the structured perceptron
• constraints on feature structure make efficient algorithms possible

• Unary and markov features => Viterbi algorithm

• Extensions:
• How to frame other problems as sequence labeling tasks

• Viterbi is not the only way to solve the argmax: Integer Linear Programming is
a more general solution

What you should know:
Dependency Parsing
• Interpreting dependency trees
• Transition-based dependency parsing

• Shift-reduce parsing
• Transition systems: arc standard, arc eager
• Oracle algorithm: how to obtain a transition sequence given a tree
• How to construct a multiclass classifier to predict parsing actions
• What transition-based parsers can and cannot do
• That transition-based parsers provide a flexible framework that allows many

extensions
• such as RNNs vs feature engineering, non-projectivity (but I don’t expect you to memorize

these algorithms)

• Graph-based dependency parsing
• Chu-Liu-Edmonds algorithm
• Stuctured perceptron

Where we started on the 1st day of class

• Levels of linguistic analysis in NLP
• Morphology, syntax, semantics, discourse

• Why is NLP hard?
• Ambiguity

• Sparse data
• Zipf’s law, corpus, word types and tokens

• Variation and expressivity

• Social Impact

Ambiguity and Sparsity

• What are examples of NLP challenges due to ambiguity/sparsity?

• What are techniques for addressing ambiguity/sparsity in NLP
systems?

Linguistic Knowledge

• How is linguistic knowledge incorporated in NLP systems?

Example: Adding attention in an encoder-
decoder model

Attention model: Create a source context
vector for each time step t

• Attention vector:
• Entries between 0 and 1

• Interpreted as weight given to
each source word when
generating output at time step t

Attention vectorContext vector

Attention model
How to calculate attention scores

Attention model
Various ways of calculating attention score
• Dot product

• Bilinear function

• Multi-layer perceptron (original
formulation in Bahdanau et al.)

Attention model
Illustrating attention weights

NLP tasks often require predicting structured
outputs

• What kind of output structures?

• Why is predicting structures challenging from a ML perspective?

• What techniques have we learned for addressing these challenges?

Structured prediction trade-offs in
dependency parsing

Transition-based

• Locally trained

• Use greedy search algorithms

• Define features over a rich
history of parsing decisions

Graph-based

• Globally trained

• Use exact (or near exact) search
algorithms

• Define features over a limited
history of parsing decisions

Structured prediction trade-offs in sequence
labeling
Multiclass Classification at each time
step

• Locally trained

• Make predictions greedily

• Can define features over history
of tag predictions

Sequence labeling with structured
perceptron

• Globally trained

• Use exact search algorithms

• Define features over a limited
history of predictions

Consider this new NLP task

• Goal: verify information using
evidence from Wikipedia.

• Input: a factual claim involving one
or more entities (resolvable to
Wikipedia pages)

• Outputs:
• the system must extract textual

evidence (sets of sentences from
Wikipedia pages) that support or
refute the claim.

• Using this evidence, label the claim as
Supported, Refuted given the
evidence or NotEnoughInfo.

How would you build
a system for this task?

This is the shared task of the Fact Extraction and Verification (FEVER)
workshop

You can see what solutions researchers came up with here:

http://fever.ai/task.html

http://fever.ai/task.html

Social Impact

• NLP experiments and applications can have a direct effect on
individual users’ lives

• Some issues
• Privacy
• Exclusion
• Overgeneralization
• Dual-use problems

• What are examples of each of these issues in NLP systems?

[Hovy & Spruit ACL 2016]

Some ways to keep learning

• CLIP talks (Wed 11am) http://go.umd.edu/cliptalks
• Language Science Center http://lsc.umd.edu
• Read research papers (e.g., from ACL and EMNLP conferences)

• ACL anthology is a good starting point to search NLP papers

• Build your own system for shared tasks
• E.g., yearly SemEval evaluations, Kaggle

• Podcasts:
• NLP Highlights covers recent papers and trends in NLP research
• Lingthusiam covers a very wide range of linguistic topics https://lingthusiasm.com/
• Talking Machines: “Human Conversations about Machine Learning”

https://www.thetalkingmachines.com

http://go.umd.edu/cliptalks
http://lsc.umd.edu/
https://www.aclweb.org/anthology/
http://alt.qcri.org/semeval2020/index.php?id=tasks
https://soundcloud.com/nlp-highlights
https://lingthusiasm.com/
https://www.thetalkingmachines.com/

