Introduction to Natural Language Processing

CMSC 470

Marine Carpuat
Final Exam

• Friday December 13, 1:30-3:30pm, EGR 1104

• You can bring one sheet of notes (double sided okay)

• Exam structure
 • True/False or short answer problem similar to homework quizzes
 • 2 or 3 longer problems where you are expected to show your work

• Cumulative exam, but with more focus on topics covered after the midterm
Topics

• Words and their meanings
 • Distributional semantics and word sense disambiguation
 • Fundamentals of supervised classification

• Sequences
 • N-gram and neural language models
 • Sequence labeling tasks
 • Structured prediction and search algorithms

• Application: Machine Translation

• Trees
 • Syntax and grammars
 • Parsing
What you should know: Dense word embeddings

• Dense vs. sparse word embeddings

• How to generating word embeddings with Word2vec
 • Skip-gram model
 • Training

• How to evaluate word embeddings
 • Word similarity
 • Word relations
 • Analysis of biases
What you should know
Machine Translation

• Context: Historical Background
 • Machine Translation is an old idea, its history mirrors history of AI
 • Why is machine translation difficult?
 • Translation ambiguity
 • Word order changes across languages
 • Translation model history: rule-based -> statistical -> neural

• Machine Translation Evaluation
 • What are adequacy and fluency
 • Pros and cons of human vs automatic evaluation
 • How to compute automatic scores: Precision/Recall and BLEU
What you should know: Recurrent Neural Network Language Models

• Mathematical definition of an RNN language model
• How to train them

• Their strengths and weaknesses
 • Have all the strengths of feedforward language model
 • And do a better job at modeling long distance context
 • However
 • Training is trickier due to vanishing/exploding gradients
 • Performance on test sets is still sensitive to distance from training data
What you should know: Neural Machine Translation

• How to formulate machine translation as a sequence-to-sequence transformation task
• How to model $P(E|F)$ using RNN encoder-decoder models, with and without attention
• Algorithms for producing translations
 • Ancestral sampling, greedy search, beam search
• How to train models
 • Computation graph, batch vs. online vs. minibatch training
• Examples of weaknesses of neural MT models and how to address them
 • Bidirectional encoder, length bias
• Determine whether a NLP task can be addressed with neural sequence-to-sequence models
What you should know:
POS tagging & sequence labeling

• POS tagging as an example of sequence labeling task

• Requires a predefined set of POS tags
 • Penn Treebank commonly used for English
 • Encodes some distinctions and not others

• How to train and predict with the structured perceptron
 • constraints on feature structure make efficient algorithms possible
 • Unary and markov features => Viterbi algorithm

• Extensions:
 • How to frame other problems as sequence labeling tasks
 • Viterbi is not the only way to solve the argmax: Integer Linear Programming is a more general solution
What you should know: Dependency Parsing

- Interpreting dependency trees
- Transition-based dependency parsing
 - Shift-reduce parsing
 - Transition systems: arc standard, arc eager
 - Oracle algorithm: how to obtain a transition sequence given a tree
 - How to construct a multiclass classifier to predict parsing actions
 - What transition-based parsers can and cannot do
 - That transition-based parsers provide a flexible framework that allows many extensions
 - such as RNNs vs feature engineering, non-projectivity (but I don’t expect you to memorize these algorithms)
- Graph-based dependency parsing
 - Chu-Liu-Edmonds algorithm
 - Structured perceptron
Where we started on the 1st day of class

• Levels of linguistic analysis in NLP
 • Morphology, syntax, semantics, discourse

• Why is NLP hard?
 • Ambiguity
 • Sparse data
 • Zipf’s law, corpus, word types and tokens
 • Variation and expressivity
 • Social Impact
Ambiguity and Sparsity

• What are examples of NLP challenges due to ambiguity/sparsity?

• What are techniques for addressing ambiguity/sparsity in NLP systems?
Linguistic Knowledge

• How is linguistic knowledge incorporated in NLP systems?
Example: Adding attention in an encoder-decoder model

\[m_t^{(f)} = M_{:,f_t} \]

\[h_t^{(f)} = \begin{cases}
\text{RNN}^{(f)}(m_t^{(f)}, h_{t-1}^{(f)}) & t \geq 1, \\
0 & \text{otherwise.}
\end{cases} \]

\[m_t^{(e)} = M_{:,c_{t-1}} \]

\[h_t^{(e)} = \begin{cases}
\text{RNN}^{(e)}(m_t^{(e)}, h_{t-1}^{(e)}) & t \geq 1, \\
h_{t-1}^{(F)} & \text{otherwise.}
\end{cases} \]

\[p_t^{(e)} = \text{softmax}(W_h h_t^{(e)} + b_s) \]
Attention model: Create a source context vector for each time step \(t \)

- **Attention vector:**
 - Entries between 0 and 1
 - Interpreted as weight given to each source word when generating output at time step \(t \)

\[
c_t = H^{(f)} \alpha_t.
\]
Attention model
How to calculate attention scores

\[h_t^{(e)} = \text{enc}([\text{embed}(e_{t-1}); c_{t-1}], h_{t-1}^{(e)}). \]

\[a_{t,j} = \text{attn_score}(h_j^{(f)}, h_t^{(e)}). \]

\[\alpha_t = \text{softmax}(a_t). \]

\[p_t^{(e)} = \text{softmax}(W_{hs}[h_t^{(e)}; c_t] + b_s). \]

Figure 28: A computation graph for attention.
Attention model
Various ways of calculating attention score

• Dot product

$$\text{attn_score}(h_j^{(f)}, h_t^{(e)}) := h_j^{(f)\top} h_t^{(e)}.$$

• Bilinear function

$$\text{attn_score}(h_j^{(f)}, h_t^{(e)}) := h_j^{(f)\top} W_a h_t^{(e)}.$$

• Multi-layer perceptron (original formulation in Bahdanau et al.)

$$\text{attn_score}(h_t^{(e)}, h_j^{(f)}) := w_{a2}^\top \tanh(W_{a1}[h_t^{(e)}; h_j^{(f)}]).$$
Attention model
Illustrating attention weights

The agreement on the European Economic Area was signed in August 1992.

NLP tasks often require predicting structured outputs

• What kind of output structures?

• Why is predicting structures challenging from a ML perspective?

• What techniques have we learned for addressing these challenges?
Structured prediction trade-offs in dependency parsing

Transition-based
- Locally trained
- Use greedy search algorithms
- Define features over a rich history of parsing decisions

Graph-based
- Globally trained
- Use exact (or near exact) search algorithms
- Define features over a limited history of parsing decisions
Structured prediction trade-offs in sequence labeling

Multiclass Classification at each time step
- Locally trained
- Make predictions greedily
- Can define features over history of tag predictions

Sequence labeling with structured perceptron
- Globally trained
- Use exact search algorithms
- Define features over a limited history of predictions
Consider this new NLP task

- Goal: verify information using evidence from Wikipedia.
- Input: a factual claim involving one or more entities (resolvable to Wikipedia pages)
- Outputs:
 - the system must extract textual evidence (sets of sentences from Wikipedia pages) that support or refute the claim.
 - Using this evidence, label the claim as **Supported**, **Refuted** given the evidence or **NotEnoughInfo**.

Claim: The Rodney King riots took place in the most populous county in the USA.

[wiki/Los_Angeles_Riots]

- The 1992 Los Angeles riots, also known as the Rodney King riots, were a series of riots, lootings, arsons, and civil disturbances that occurred in Los Angeles County, California in April and May 1992.

[wiki/Los_Angeles_County]

- Los Angeles County, officially the County of Los Angeles, is the most populous county in the USA.

Verdict: Supported
This is the shared task of the Fact Extraction and Verification (FEVER) workshop

You can see what solutions researchers came up with here:

http://fever.ai/task.html
Social Impact

• NLP experiments and applications can have a direct effect on individual users’ lives

• Some issues
 • Privacy
 • Exclusion
 • Overgeneralization
 • Dual-use problems

• What are examples of each of these issues in NLP systems?

[Hovy & Spruit ACL 2016]
Some ways to keep learning

• CLIP talks (Wed 11am) http://go.umd.edu/cliptalks
• Language Science Center http://lsc.umd.edu
• Read research papers (e.g., from ACL and EMNLP conferences)
 • ACL anthology is a good starting point to search NLP papers
• Build your own system for shared tasks
 • E.g., yearly SemEval evaluations, Kaggle
• Podcasts:
 • NLP Highlights covers recent papers and trends in NLP research
 • Lingthusiam covers a very wide range of linguistic topics https://lingthusiasm.com/
 • Talking Machines: “Human Conversations about Machine Learning”
 https://www.thetalkingmachines.com