
78 November 1996/Vol. 39, No. 11 COMMUNICATIONS OF THE ACM

OUR GOAL IS TO DEVELOP A MODEL OF PARALLEL COMPUTATION THAT WILL

serve as a basis for the design and analysis of fast, portable par-

allel algorithms, such as algorithms that can be implemented

effectively on a wide variety of current and future parallel

machines. If we look at the body of parallel algorithms devel-

oped under current parallel models, many are impractical

because they exploit artificial factors not present in any rea-

sonable machine, such as zero communication delay or infinite bandwidth.

Others are overly specialized because they are tailored to the idiosyncrasies of

a single machine, such as a particular interconnect topology. To improve this

situation, we need to design algorithms using a model that is realistic enough

to capture the most important performance factors in real machines, yet

abstract enough to be generally useful and to keep the algorithm analysis

tractable. Ideally, producing a better algorithm under the model should yield

a better program in practice.

The Parallel Random Access Machine (PRAM) [8] is the most popular

model for representing and analyzing the complexity of parallel algorithms. A

LogP

A Practic
Parallel

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 79

A new parallel machine model reflects the critical technology

trends underlying parallel computers

al Model of
Computation

PRAM consists of a col-

lection of processors

which compute syn-

chronously in parallel

and communicate with

a global random access

memory. The PRAM model is useful for gross classification of algorithms and

problems, but it ignores important performance bottlenecks in modern par-

allel machines because it assumes a single shared memory in which each

processor can access any memory cell in unit time. Surprisingly fast algorithms

can be developed by exploiting such loopholes, but these algorithms usually

perform poorly under more realistic assumptions [18]. Several variations on

the PRAM impose restrictions to make it more practical while attempting to

preserve much of its simplicity. These variations address memory contention

[11, 14], asynchrony [9,] latency [15], bandwidth [1], and memory hierarchy

[3, 10].

An important class of models at the opposite extreme are network models,

D a v i d E . C u l l e r , R i c h a r d M . K a r p ,

D a v i d P a t t e r s o n , A b h i j i t S a h a y ,

E u n i c e E . S a n t o s , K l a u s E r i k

S c h a u s e r , R a m e s h S u b r a m o n i a n ,

a n d T h o r s t e n v o n E i c k e n

in which communication is only allowed between
directly connected processors. Other communication
is explicitly forwarded through intermediate nodes
[13]. In each step the nodes can communicate with
their nearest neighbors and operate on local data.
Many algorithms have been created which are per-
fectly matched to the structure of a particular net-
work, including parallel prefix and non-commutative
summing on a tree, physical simulations and numeri-
cal solvers for partial differential equations on a
mesh, and FFT and bitonic sorting on a butterfly.
However, these elegant algorithms lack robustness, as
they usually do not map with equal efficiency onto
interconnection structures different from those for
which they were designed.

The perfect correspondence between algorithm
and network usually requires a number of processors
on the order of the number of data items in the input.
In the more typical case where there are many data
items per processor, the pattern of communication is
less dependent on the network. Where problems have
a local, regular communication pattern, such as sten-
cil calculation on a grid, it is easy to arrange the data
so that only a diminishing fraction of the communica-
tion is external to the processor. Basically, the inter-
processor communication diminishes as the surface to
volume ratio, so with large enough problem sizes, the
cost of communication becomes trivial. Finally, most
current networks allow messages to cut through inter-
mediate nodes without disturbing the processor. This
is much faster than explicit forwarding, and reduces
the dependence of algorithm performance on the
details of network topology.

The bulk-synchronous parallel model (BSP) devel-
oped by Valiant [19] attempts to bridge theory and
practice with a more radical variant of the PRAM that
captures key performance bottlenecks in a simple
fashion by imposing restrictions on the programming
model. The key idea is that the program executes as a
series of supersteps. In a superstep each processor per-
forms local computation and initiates a limited num-

ber of messages. Supersteps are separated by
global barriers, and all messages from one
superstep are received before the next
begins. The superstep must be sufficiently
long so that the time to route all the messages
in a step is at most a fixed fraction of the
duration of the step. Thus, if the algorithm
designer can arrange to overlap communica-
tion with enough independent computation
in each step, the communication latency and
bandwidth can be ignored (up to a constant
factor).

The BSP was a very encouraging starting
point in our search for a parallel model that
would be realistic, yet simple enough to be
used to design algorithms that work pre-
dictably well over a wide range of machines.
The model should allow the algorithm
designer to address key performance issues
without specifying unnecessary detail. It

should allow machine designers to give a concise per-
formance summary of their machine against which
algorithms can be evaluated.

The other source of encouragement was the
apparent architectural convergence in the field. His-
torically, it has been difficult to develop a reasonable
abstraction of parallel machines because the
machines exhibited such a diversity of structure rep-
resented by the radically different hardware organi-
zations, including MIMD and SIMD machines, vector
processors, systolic arrays, dataflow, shared memory,
and message passing machines. However, technolog-
ical factors have brought convergence towards sys-
tems with a familiar appearance----a collection of
essentially complete computers, each consisting of a
microprocessor, cache memory, and sizable DRAM
memory, connected by a robust communication net-
work (Figure 1). Variations on this structure involve
localized clusters of processors and the specifics of
the interface between the processor and the commu-
nication network.

The key drivers of this convergence are the phe-
nomenal increase of microprocessor performance
and memory capacity, as well as the equally astound-
ing cost of developing these highly integrated circuits.
Microprocessor performance is advancing at a rate of
50 to 100% per year, while memory capacity is qua-
drupling every three years. Their large development
cost is borne by the extremely large market for com-
modity uniprocessors. To remain viable, parallel
machines must ride the same technology growth
curve, with the added degree of freedom being the
number of processors in the system. This has led Intel,
Thinking Machines, Meiko, Convex, HP, IBM and
Cray Research to use off-the-shelf microprocessors or
even full workstation nodes in their latest parallel
machines. The technological opportunities suggest
that future parallel machines are much more likely to
aim at hundreds or thousands of 64-bit, off-the-shelf
processors than at a million custom 1-bit processors.
Thus, parallel algorithms need to be developed under

80 November 1996/Vol. 39, No. 11 COMMUNICATIONS OF THE ACM

MicroProcessor

Cache Memory

Network Interface

DRAM MemoryMicroProcessor

Cache Memory

Network Interface

DRAM Memory

 Inter-
connection

Network

Figure 1. This organization characterizes most massively parallel
processors (MPPs). Current commercial examples include the Intel
Paragon, Thinking Machines CM-5, IBM SP-2, Ncube, Cray T3D, and
Meiko CS-2. This structure describes essentially all of the current
“research machines” as well.

the assumption of a large number of data elements
per processor. This has significant impact on the
kinds of algorithms that are effective in practice.

Network technology is advancing as well, but it is
not driven by the same volume market forces as
microprocessors and memory. Currently, communi-
cation bandwidth lags far behind internal processor
memory bandwidth and the time to move data across
the network is far greater than the time to move data
between chips on a node. Moreover, the realizable
performance is limited by the interface between the
network and the node, which consumes processing
cycles just getting data into and out of the network.
Although network interfaces are improving, proces-
sors are improving in performance even faster, so we
must assume that high latency and overhead of com-
munication, as well as limited bandwidth, will contin-
ue to be problems.

There appears to be no consensus emerging on
the interconnection topology: The networks of new
commercial machines are typically different from
their predecessors and different from one another.
In addition, most production parallel machines can
operate in the presence of network faults and allow
the operating system to assign programs to collec-
tions of nodes. Thus, the physical interconnect
underlying a program may vary even on a single
machine. Attempting to exploit a specific network
topology is likely to yield algorithms that are not very
robust in practice.

The convergence of parallel architectures is reflect-
ed in our LogP model that addresses significant com-

mon issues while suppressing machine specific ones,
such as network topology and routing algorithm. The
model characterizes a parallel machine by a small set
of parameters. In our approach, a good algorithm
embodies a strategy for adapting to different
machines in terms of these parameters.

LogP Model
Starting from the technological motivations previous-
ly discussed, together with programming experience
and examination of popular theoretical models, we

have developed a model of a distributed-memory
multiprocessor in which processors communicate by
point-to-point messages. The model specifies the per-
formance characteristics of the interconnection net-
work, but does not describe the structure of the
network.

The main parameters of the model are the follow-
ing (illustrated in Figure 2):

L: An upper bound on the latency, or delay,
incurred in communicating a message containing
a word (or small number of words) from its
source processor/memory module to its target
processor/memory module.

o: The overhead, defined as the length of time that a
processor is engaged in the transmission or
reception of each message. During this time, the
processor cannot perform other operations.

g: The gap, defined as the minimum time interval
between consecutive message transmissions or
consecutive message receptions at a processor.
The reciprocal of g corresponds to the available
per-processor communication bandwidth.

P: The number of processor/memory modules.

The parameters L, o, and g are typically measured
as multiples of the processor cycle time. The model is
asynchronous, in that processors work asynchronously
and the latency experienced by any message is unpre-
dictable, but is bound above by L in the absence of
stalls. Because of variations in latency, messages direct-
ed to a given target module may not arrive in the same
order as they are sent. The basic model assumes that
all messages are of a small fixed size. Furthermore, it
is assumed that the network has a finite capacity, such
that at most L/g  messages can be in transit from any
processor or to any processor at any time. If a proces-
sor attempts to transmit a message that would exceed
this limit, it stalls until the message can be sent with-
out exceeding the capacity limit.

In analyzing an algorithm, the key metrics are the
maximum time and the maximum amount of storage
used by any processor. In order to be considered cor-
rect, an algorithm must produce correct results
under all interleavings of messages consistent with
the upper bound of L on latency. However, in esti-
mating the running time of an algorithm, we assume
that each message incurs a latency of L.

LogP models communication but does not attempt
to model local computation. We have resisted the
temptation to provide a more detailed model of the
individual processors taking into account factors such
as cache size or pipeline structure, and rely instead on
the existing body of knowledge in implementing fast
sequential algorithms on modern uniprocessor sys-
tems to fill the gap. An implementation of a good par-
allel algorithm on a specific machine will surely
require a degree of local tuning.

There is a concern that LogP has too many para-
meters, which makes analysis of interesting algo-
rithms difficult. Fortunately, the parameters are not

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 81

P M P M P M. . .
P (processors)

oo (overhead)

L (latency)
Interconnection network

g (gap)

Limited capacity
(L/g to or from
a processor)

Figure 2. The LogP model describes an abstract
machine configuration in terms of four performance
parameters: L, the latency experienced in each
communication event; o, the overhead experienced
by the sending and receiving processors for each
communication event; g, the gap between successive
sends or successive receives by a processor; and P,
the number of processor/memory modules.

equally important in all situations; often it is possible
to ignore one or more parameters without seriously
weakening the analysis. For example, in algorithms
that communicate data infrequently, it is reasonable
to ignore the bandwidth and capacity limits. In some
algorithms, messages are sent in long streams which
are pipelined through the network, so that message
transmission time is dominated by the inter-message
gaps, and the latency may be disregarded. In some
machines the overhead dominates the gap, so g can
be eliminated. One convenient approximation tech-
nique is to increase o to be as large as g, so g can be
ignored. This is conservative by at most a factor of
two. We hope that parallel architectures improve to a
point where o can be eliminated, but today this seems
premature.

Our choice of parameters represents a compro-
mise between faithfully capturing the execution char-

acteristics of real machines and providing a
reasonable framework for algorithm design and
analysis. No small set of parameters can describe all
machines completely. On the other hand, analysis of
interesting algorithms is difficult with a large set of
parameters. We believe that LogP represents a good
compromise in that additional detail would seek to
capture phenomena of only modest impact, while
dropping parameters would encourage algorithmic
techniques that are not well supported in practice.

Discouraged Loopholes and Rewarded Techniques
By including L, o, and g, the model eliminates a vari-
ety of loopholes that other models permit. For exam-
ple, many PRAM algorithms are excessively
fine-grained, since there is no penalty for inter-
processor communication. Since the PRAM model
assumes that each memory cell is independently
accessible, it neglects the issue of contention caused
by concurrent access to different cells within the
same memory module. The PRAM model also
assumes, unrealistically, that the processors operate
completely synchronously. There are many variations
on the basic PRAM model which address one or more
of these problems, namely memory contention, asyn-
chrony, latency, and bandwidth. LogP addresses all of
these issues.

Although any specific parallel computer will, of
course, have a fixed number of processors, PRAM

algorithms often allow the number of concurrently
executing tasks to grow as a function of the size of the
input. The rationale offered is that these tasks can be
assigned to the physical processors, with each proces-
sor apportioning its time among the tasks assigned to
it. This technique of multithreading is a convenient
way of masking latency [16, 19]. Since each physical
processor simulates several virtual processors, com-
putation does not have to be suspended during the
processing of a remote request by one of the virtual
processors. In practice, this technique is limited by
the available communication bandwidth and by the
overhead involved in context switching. We do not
model context switching overhead, but capture the
other constraints realistically through the parameters
o and g. Moreover the capacity constraint allows mul-
tithreading to be employed only up to a limit of L/g 
virtual processors. Under LogP, multithreading rep-

resents a convenient technique which simplifies
analysis as long as these constraints are met, rather
than a fundamental requirement.

Most importantly, LogP encourages techniques that
work well in practice, such as coordinating the assign-
ment of work with data placement, so as to reduce the
amount of communication. The model also encour-
ages the careful scheduling of communication and
overlapping of computation with communication with-
in the limits imposed by network capacity. The limita-
tion on network capacity also encourages balanced
communication patterns in which no processor is
flooded with incoming messages.

Algorithm Design
In evaluating the utility of the LogP model, we con-
sidered three different criteria:

•Do the solutions to basic theoretical problems dif-
fer in interesting ways under LogP from those
under traditional models?

•For practical applications, does designing against
the performance characteristics of the model lead
to qualitatively good solutions?

•Is it possible to accurately predict the performance
of the implementation of algorithms on real
machines?

A number of studies have been conducted to

82 November 1996/Vol. 39, No. 11 COMMUNICATIONS OF THE ACM

encourages techniques that

work well in practice, such as

coordinating the assignment of work with data placement,

so as to reduce the amount of communication.

LogP

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 83

answer these questions. We include a brief summary
here; the interested reader is encouraged to consult
the references for a more complete treatment.

The original LogP paper [6] considers the prob-
lems of optimal broadcast and summation to illus-
trate use of the model. The traditional solution to
these problems is a simple, balanced tree. Under
LogP the optimal broadcast (or summation) tree is
unbalanced with the fan-out of each node deter-
mined by the relative values of L, o, and g. (Nodes
that start later must have fewer children, since it takes
time to communicate with each one.) Accounting for
the three aspects of communi-
cation cost encourages the
algorithm designer to sched-
ule communication along with
the computation. Further
techniques for scheduling
communication are presented
in [12] for several communi-
cation problems.

The qualitative value of the
model has been demonstrated
on problems such as FFT, sort-
ing, connected components
and the solution of systems of
linear equations. The Coo-
ley/Tukey FFT algorithm has
a butterfly communication
pattern on an element-by-ele-
ment basis, and is often cited
as one of the reasons that
machines should use an inter-
connection network with a
topology closely related to the
butterfly. However, when the
number of data elements is
much larger than the number
of processors, the assignment
of data elements to processors
affects the inherent communi-
cation in the algorithm. LogP
encourages the designer to
work with the data layout as
part of the algorithm design.
Rather than using a strict blocked or cyclic data lay-
out throughout the FFT algorithm, using a hybrid
data layout reduces the amount of communication.
In addition, the FFT problem illustrates the practical
importance of balancing the communication among
processors. Measurements on a Thinking Machines
CM-5 show that a balanced communication schedule
is an order of magnitude faster than naive schedules
for remapping the data between layouts [6].

In designing triangular solvers, we were able to use
LogP not only as a model to predict algorithm per-
formance but also as a tool for deriving lower bounds
on running time. A significant result was that stan-
dard blocked and blocked-cyclic layouts do not yield
optimal parallel algorithms. Results for this problem
are given in detail in [17]. Several other important

problems have also been studied in detail under the
LogP model. In [6] we examine LU decomposition,
the core of the LINPACK benchmark.

The use of the LogP model to predict running
time for algorithm implementations is illustrated in
[7] for four sorting algorithms on a wide range of
problem sizes and machine sizes. We found that uti-
lizing LogP led to significant insights on how to
design a more efficient sorting algorithm and pro-
vided quite accurate predictions on running time.
For example, Figure 3 shows the predicted and mea-
sured times over a wide range of problem sizes and

machine configurations for
Histo-Radix Sort (a parallel ver-
sion of radix sort [4]), on uni-
formly distributed keys. In order
to place the data on a common
scale, we divide the time by the
total number of keys per proces-
sor (N/P) and present this nor-
malized time in microseconds
(µs) per key per processor. For
small values of N/P, our mea-
surements are only 9% higher
than the prediction; for large
values of N/P, our measure-
ments are 37% higher. Ignoring
the capacity constraint, we pre-
dict the number of processors
has a negligible impact on the
execution time per key, but
measurements show the execu-
tion time increases slowly with
the number of processors due to
a slight increase in time for dis-
tribution. LogP helped identify
deficiencies in the implementa-
tion which once corrected
resulted in large performance
improvements.

Matching the Model to Real
Machines
The LogP model abstracts the
communication network into

three parameters (illustrated in Figure 2). When the
interconnection network is operating within its
capacity, the time to transmit a small message will be
2o 1 L: an overhead of o at the sender and the receiv-
er, and a latency of L within the network. The avail-
able bandwidth per processor is determined by g and
the network capacity, L/g . In essence, the network
is treated as a pipeline of depth L with initiation rate
g and a processor overhead of o on each end. Here,
we indicate how to determine appropriate values for
the LogP parameters for any given machine. We note
there are other relevent factors that need to be dis-
cussed such as saturation, long messages, specialized
hardware support and communication patterns.
These topics are discussed in detail in [2, 6].

In a real machine, transmission of an M-bit long

Figure 3. Predicted and measured execu-
tion time per key of radix sort on 32 to 512
processors of the CM-5 (from [4]).

140

16384 10485765242882621441310726553632768

120

100

80

60

40

20

0

N/P

Predicted

us
/k

ey
/p

ro
c

16384 10485765242882621441310726553632768
N/P

140

120

100

80

60

40

20

0

us
/k

ey
/p

ro
c

Measured

512
256
128
64
43

Processors

message in an unloaded or lightly loaded network has
four parts. First, the send overhead is the time the proces-
sor is busy interfacing to the network before the first bit
of data is placed onto the network. The message is
transmitted into the network channel a few bits at a
time, determined by the channel width w. Thus, the
time to get the last bit of an M-bit message into the net-
work is M/w cycles. Most modern parallel machines
employ some form of cut-through routing, so the time for
the last bit to cross the network to the destination node
is Hr, where H is the distance of the route (number of
hops) and r is the delay through each intermediate
routing node, independent of the message size. Finally,
the receive overhead is the time from the arrival of the last
bit until the receiving processor can do something use-
ful with the message. In summary, the total message
communication time for an M-bit message across H
hops is given by the following.

T(M, H) 5 Tsnd 1  M

w  1 Hr 1 Trcv

Table 1 lists values for various parallel machines.
The send and receive overheads for conventional
message passing libraries include a considerable
amount of computational work for protocol process-
ing and buffer management. The overheads with
Active Message (AM) libraries at the bottom of
the table give a better indication of the hardware
capability.

In determining LogP parameters for a given
machine, it appears reasonable to choose
o 5 2

Tsnd + Trcv and L 5 Hr1 
M
w  , where H is the maxi-

mum distance of a route and M is the fixed message size
being used. The gap g is at least M divided by the per
processor bisection bandwidth. However, in many
designs the limiting factor is the processing rate in the
network interface hardware itself. A methodology for
determining the LogP parameters empirically for Active
Messages is developed in [5]. Analogous techniques
could be developed for message passing and shared
memory programming models.

Summary
Our search for a
machine-independent
model for parallel
computation is moti-
vated by technologi-
cal trends which are
driving the high-end
computer industry
toward massively par-
allel machines con-
structed from nodes
containing powerful
processors and sub-
stantial memory,
interconnected by
networks with limit-
ed bandwidth and
significant latency.

The LogP model
attempts to capture the important bottlenecks of
such parallel computers with a small number of para-
meters: The latency (L), overhead (o), bandwidth
(g) of communication, and the number of processors
(P). We believe the model is sufficiently detailed to
reflect the major practical issues in parallel algorithm
design, yet simple enough to support detailed algo-
rithmic analysis. At the same time, the model avoids
specifying the programming style or the communica-
tion protocol, being equally applicable to shared-
memory, message passing, and data parallel
paradigms.

As with any new proposal, there will naturally be
concerns regarding its utility as a basis for further
study. From our discussions and from indepth explo-
ration of several parallel processing applications on
LogP, we have observed the following:

1. Algorithms may adapt their computation and com-
munication structures in response to each of the
parameters of the model.
2. In specific situations some parameters become
insignificant and one can work with a simplified
model.
3. Adjusting data placement and scheduling commu-
nication are important techniques for improving
algorithms.
4. LogP can be used not only for algorithm design
and analysis but also as a model to determine lower
bounds on parallel running time.
5. The LogP model is extremely valuable in guiding
algorithm design. Discrepancies between predicted
and measured execution time often highlighted defi-
ciencies in implementation which violated con-
straints specified by the model. Correcting these
resulted in a large performance improvement and
led to a close match between predicted and measured
execution time.

We believe the LogP model opens several avenues
of research. It potentially provides a concise summa-

84 November 1996/Vol. 39, No. 11 COMMUNICATIONS OF THE ACM

nCUBE/2
TMC CM-5
IBM SP-2
Meiko CS-2
Intel Paragon
Cray T3D
Dash
J-Machine
Monsoon
nCUBE/2 (AM)
CM-5 (AM)
Meiko CS-2 (AM)
Intel Paragon (AM)

Hypercube
4-ary Fat-tree
Banyan
4-ary Fat-tree
2d Mesh
3d Torus
2d Torus
3d Mesh
Butterfly
Hypercube
4-ary Fat-tree
4-ary Fat-tree
2d Mesh

25
25
25
14
7
7

30
31
20
25
25
14
7

1
4
8
8

16
16
16
8

16
1
4
8

16

6400
3600
2100
2700
4300

35
30
16
10

1000
132
230
540

40
8
5

20
7-10

3
2
2
2

40
8

20
7-10

5
9.3
9.3
9.3
21
10
6.8

12.1
5
5

9.3
9.3
21

6760
3714
1560
3050
4450
145
53
60
30

1360
246
570
750

Machine Network
Cycle

ns
w

bite
Tsnd + Trcv

cycles
r

cycles
avg. //

(1024 Proc.)
L (M = 160)
(1024 Proc.)

Table 1. Network timing parameters for a one-way message without contention
on several current commercial and research multiprocessors. The final rows refer to the
active message layer, which uses the commercial hardware, but reduces the
interface overhead.

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 85

ry of the performance characteristics of current and
future machines. This will require refining the
process of parameter determination and evaluating a
large number of machines. Such a summary can
focus the efforts of machine designers toward archi-
tectural improvements that can be measured in terms
of these parameters. For example, a machine with
large gap g is only effective for algorithms with a large
ratio of computation to communication. In effect,
the model defines a four dimensional parameter
space of potential machines. The product line
offered by a particular vendor may be identified with
a curve in this space, characterizing the system scala-
bility. It will be important to evaluate the complexity
of a wide variety of algorithms in terms of the model
and to evaluate the predictive capabilities of the
model. The model provides a new framework for clas-
sifying algorithms and identifying which are most
attractive in various regions of the machine parame-
ter space. We hope this will stimulate the develop-
ment of new parallel algorithms and the examination
of the fundamental requirements of various prob-
lems within the LogP framework.

Acknowledgments
Several people provided helpful comments on earlier
drafts of this article, including Larry Carter, Dave
Douglas, Jeanne Ferrante, Seth Copen Goldstein,
Anoop Gupta, John Hennessy, Tom Leighton,
Charles Leiserson, Lesley Matheson, Rishiyur Nikhil,
Abhiram Ranade, Luigi Semenzato, Larry Snyder,
Burton Smith, Guy Steele, Robert Targan, Leslie
Valiant, and the anonymous reviewers. Special thanks
to Andrea Dusseau for the implementation and
analysis of the parallel radix sort algorithm.

References
1. Aggarwal, A., Chandra, A. K., and Snir, M. Communication

complexity of PRAMs. In Theoretical Computer Science (March
1990).

2. Alexander, A., Ionescu, M., Schauser, K., and Scheiman, C.
LogP: Incorporating long messages into the LogP model. In
The 7th Annual Symposium on Parallel Algorithms and Architectures.
July 1995.

3. Alpern, B., Carter, L., Feig, E., and Selker, T. The uniform
memory hierarchy model of computation. Algorithmica (1993).

4. Blelloch, G. E., Leiserson, C. E., Maggs, B. M., Plaxton, C. G.,
Smith, S. J., and Zagha, M. A comparison of sorting algorithms
for the connection machine CM-2. In Proceedings of the Sympo-
sium on Parallel Architectures and Algorithms. 1990.

5. Culler, D., Liu, L. T., Martin, R., and Yoshikawa, C. Assessing
fast network interfaces. IEEE Micro 16, 1 (Feb. 1996).

6. Culler, D. E., Karp, R. M., Patterson, D. A., Sahay, A., Schauser,
K. E., Santos, E., Subramonian, R., and von Eicken, T. LogP:
Towards a realistic model of parallel computation In Proceed-
ings of the 4th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. May 1993.

7. Dusseau, A., Culler, D., Schauser, K., and Martin, R. Fast par-
allel sorting under LogP: Experiences with CM-5. IEEE Trans.
Parallel and Distrib. Syst. 7, 8. (1996).

8. Fortune, S., and Wyllie, J. Parallelism in random access
machines. In Proceedings of the 10th Annual Symposium on Theory
of Computing. 1978.

9. Gibbons, P. B. A more practical PRAM model. In Proceedings of
the ACM Symposium on Parallel Algorithms and Architectures. ACM,
1989.

10. Heywood, T. and Ranka, S. A practical hierarchical model of par-
allel computation. J. Parallel and Distrib. Comput. 16, 3 (Nov. 1992).

11. Karp, R. M., Luby, M. and Meyer auf der Heide, F. Efficient
PRAM simulation on a distributed memory machine. In Pro-
ceedings of the 24th Annual ACM Symposium of the Theory of Com-
puting (May 1992).

12. Karp, R. M., Sahay, A., Santos, E. and Schauser, K. E. Optimal
broadcast and summation in the LogP model. In Proceedings of
the ACM Symposium on Parallel Algorithms and Architectures. ACM,
1993.

13. Leighton, F. T. Introduction to Parallel Algorithms and Architec-
tures: Arrays-Trees-Hypercubes. Morgan Kaufmann, New York,
1992.

14. Mehlhorn, K. and Vishkin, U. Randomized and deterministic
simulations of PRAMs by parallel machines with restricted
granularity of parallel memories. Acta Informatica 21. (1984).

15. Papadimitriou, C. H. and Yannakakis, M. Towards an architec-
ture-independent analysis of parallel algorithms. In Proceedings
of the 20th Annual ACM Symposium of the Theory of Computing.
ACM, 1988.

16. Ranade, A. G. How to emulate shared memory. In Proceedings
of the 28th IEEE Annual Symposium on Foundations of Computer Sci-
ence. 1987.

17. Santos, E. E. Solving triangular linear systems in parallel using
substitution. In Proceedings of the 7th Annual IEEE Symposium on
Parallel and Distributed Processing. 1995.

18. Snyder, L. Type architectures, shared memory, and the corol-
lary of modest potential. In Ann. Rev. Comput. Sci. Annual
Reviews Inc., 1986, pp 289--317.

19. Valiant, L. G. A bridging model for parallel computation. Com-
mun. ACM 33, 8 (Aug. 1990).

DAVID CULLER (culler@cs.berkeley.edu) is an associate profes-
sor of computer science and engineering at the University of Cali-
fornia, Berkeley.

RICHARD M. KARP (karp@cs. washington.edu) is Professor of
computer science and engineering and Adjunct Professor of Mol-
ecular Biotechnology at the University of Washington in Seattle.

DAVID PATTERSON (pattrsn@cs.berkeley.edu) is Professor of
computer science and engineering at the University of California,
Berkeley.

ABHIJIT SAHAY (sahay@sphinx.com) is Systems R&D Engineer
at Iris Financial Engineering and Systems, Inc.

EUNICE E. SANTOS (santos@eecs.lehigh.edu) is an assistant pro-
fessor in the electrical engineering and computer science depart-
ment at Lehigh University.

KLAUS ERIK SCHAUSER (schauser@cs.ucsb.edu) is an assistant
professor at the computer science department at the University of
California, Sanat Barbara.

RAMESH SUBRAMONIAN (subramon@dipl.rdd. lmsc.lock-
heed.com) works for the Lockheed Corp.

THORSTEN von EICKEN (tve@cs. cornell.edu) is an assistant pro-
fessor in the computer science department of Cornell University.

Computational support was provided by the NSF Infrastructure Grant num-
ber CDA-8722788.

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title
of the publication and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.

© ACM 0002-0782/96/1100 $3.50

C

