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ABSTRACT

As an entry for the 2009 Gordon Bell price/performance
prize, we present the results of two different hierarchical
N-body simulations on a cluster of 256 graphics processing
units (GPUs). Unlike many previous N-body simulations on
GPUs that scale as O(N?), the present method calculates
the O(Nlog N) treecode and O(N) fast multipole method
(FMM) on the GPUs with unprecedented efficiency. We
demonstrate the performance of our method by choosing one
standard application —a gravitational N-body simulation—
and one non-standard application —simulation of turbulence
using vortex particles. The gravitational simulation using
the treecode with 1,608,044,129 particles showed a sustained
performance of 42.15 TFlops. The vortex particle simula-
tion of homogeneous isotropic turbulence using the periodic
FMM with 16,777,216 particles showed a sustained perfor-
mance of 20.2 TFlops. The overall cost of the hardware
was 228,912 dollars. The maximum corrected performance
is 28.1TFlops for the gravitational simulation, which results
in a cost performance of 124 MFlops/$. This correction is
performed by counting the Flops based on the most efficient
CPU algorithm. Any extra Flops that arise from the GPU
implementation and parameter differences are not included
in the 124 MFlops/$.

1. INTRODUCTION

Groundbreaking N-body simulations have won the Gor-
don Bell prize in 1992 [29],1995-2003 [21, 5, 30, 28, 14, 18,
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20, 19], and 2006 [22], in many cases with the aid of special-
purpose computers, i.e. GRAPE and MDGRAPE. How-
ever, in the field of N-body simulations during the past few
years, graphics processing units (GPUs) have been preferred,
rather than the expensive special-purpose computers.

The direct O(N?) N-body simulations using NVIDIA’s
CUDA (Compute Unified Device Architecture) programming
environment have achieved a performance of over 200 GFlops
on a single GPU. Hamada et al. reported a performance of
256 GFlops for a 131,072-body simulation on an NVIDIA
GeForce 8800 GTX [10]. Nyland et al. reported a perfor-
mance of 342 GFlops for a 16,384-body simulation on an
NVIDIA GeForce 8300 GTX [24]. Belleman et al. also re-
ported a GPU performance of 340 GFlops for a 131,072-
body simulation on an NVIDIA GeForce 8800 GTX with
their code Kirin [4]. More recently, Hamada reported a
performance of 653 GFlops for a 131,072-body simulation
on an NVIDIA GeForce 8800 GTS/512 [11]'. Gaburov et
al. report a performance of 800 GFlops for a 10° particle
simulation on two GeForce 9800GX2s with their code Sap-
poro [6].

The use of such data-parallel processors are a necessary
but not sufficient condition for executing large scale N-body
simulations within a reasonable amount of time. Hierar-
chical algorithms such as the tree algorithm [2] and fast
multipole method (FMM) [8] are also indispensable requi-
sites, because they bring the order of the operation count
from O(N?) down to O(NlogN) or even O(N). Stock
& Gharakhani [27] implemented the treecode on the GPU
to accelerate their vortex method calculation. Similarly,
Gumerov & Duraiswami [9] calculated the Coulomb inter-
action using the FMM on GPUs.

One of the most common problems in previous GPU im-
plementations of hierarchical algorithms was the inefficient
use of parallel pipelines when the number of target particles
per cell was small. In order to solve this problem, we de-
veloped a method that could pack “multiple walks” that are
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Figure 1: Hierarchical division of the calculation do-
main and the corresponding tree structure

evaluated by the GPU simultaneously. In order to imple-
ment this novel approach, we redesigned the tree algorithm
and FMM. As a result, a drastic gain in performance was
achieved as compared to previous implementations of these
hierarchical algorithms on GPUs.

We demonstrate the performance of our hierarchical N-
body methods by choosing one standard application —a grav-
itational N-body simulation— and one non-standard applica-
tion —simulation of turbulence using vortex particles. First,
We performed a cosmological N-body simulation of a sphere
of radius 136.28 Mpc (mega parsec) with 1,608,044,129 par-
ticles for 327 timesteps using our GPU-tree algorithm. Sub-
sequently, we applied our GPU-FMM to the calculation of a
homogeneous isotropic turbulence using 256° = 16,777, 216
vortex particles.

The remaining sections of this paper is organized as fol-
lows. In section 2, we present a novel GPU implementation
of the tree algorithm, and discuss the problems of the pre-
vious approaches, while explaining why the present method
performs better. In section 3, the results of a cosmological
N-body simulation using our GPU-treecode are shown. In
section 4, we present a novel GPU implementation of the
FMM, and the results of its performance validation tests.
In section 5, the results of a vortex particle simulation of
homogeneous isotropic turbulence using our GPU-FMM are
shown. In section 6 we calculate the overall cost performance
of our simulations. Finally, the conclusions are drawn in sec-
tion 7.

2. GPU TREE CODE

2.1 The Tree code

The treecode by Barnes and Hut [2] represents a system of
N particles in a hierarchical manner by the use of a spatial
tree data structure, as shown in Figure 1. Whenever the
force on a particle is required, the tree is traversed, starting
at the root. At each level, a gravity center of particles in a
cell is added to an “interaction list” if it is distant enough
for the truncated series approximation to maintain sufficient
accuracy in the force. If the cell is too close, the subcells are
used for the force evaluation or opened further. This tree
traversal procedure is called a “walk“. The “interaction list”
contains particles themselves or gravity centers of cells.

The original BH algorithm performs the walk for each par-
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Figure 2: Interaction list in Barnes’ modified tree
algorithm. The small black dots represent the in-
teracting particles. The white circles represent the
truncated series expansions for each cell. Both the
dots and circles are included in an interaction list.

ticle separately. The parallel code [17]2 that we have devel-
oped is based on Barnes’ modified tree algorithm [3], where
the neighboring particles are grouped together to share an
“interaction list“. Figure 2 is an illustration of the shared
“interaction list” for the particles shown in red. The mod-
ified tree algorithm terminates the tree traversal when the
cell contains less than N.,;; particles. This results in an av-
erage number of particles per cell Ny in between Ne¢ri:/8 and
Ncrit, depending on the non-uniformity. The modified tree
algorithm reduces the calculation cost of the host computer
by roughly a factor of Ny. On the other hand, the amount
of work on the force pipelines increases as we increase Ng,
since the interaction list becomes longer. There is, there-
fore, an optimal Ny at which the total computation time is
minimum. On CPUs, the optimal value is typically N, ~~ 32
[3]. On GPUs, Ny is around 1000. Note that the perfor-
mance (Flops) we are reporting is the corrected value after
the difference in the Ny between the CPU and GPU is taken
into account. This correction is performed by counting the
Flops based on the most efficient CPU algorithm. Any extra
Flops that arise from the difference in N.,;; are not counted.

Load balancing in our parallel code was achieved by space
decomposition using an orthogonal recursive bisection (ORB)
[29]. In an ORB, the box of particles is partitioned into two
boxes with an equal number of particles using a separat-
ing hyperplane oriented to lie along the smallest dimension.
This partitioning process is repeated recursively until the
number of divided boxes becomes the same as the number
of processors. When the number of processors is not a power
of two, it is a trivial matter to adjust the division at each

Zhttp://www.artcompsci.org/~
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Figure 3: Comparison of the performances of the N-body kernel using (a) the O(N log N) tree algorithm and
(b) the O(N?) direct-summation approach with shared timestep scheme on a single GeForce 8800 GTS. For
the Flops count, we used a unified operation count of 38 for the calculation between a pair of particles.

step accordingly. It is expensive to recompute the ORB at
each time step, but the cost of incremental load-balancing
is negligible.

2.2 Comparison of GPU tree codes

Figure 3 shows the performance of the O(N?) direct sum-
mation, and the O(N log N) tree algorithm with the shared
time-step scheme. We compared four different GPU imple-
mentations of the direct/tree N-body algorithm, using the
same hardware —a single NVIDIA GeForce 8800 GTS GPU
connected to an Intel Core 2 Quad Q6600 CPU based PC.
GPU codes include (1) CUNBODY-1.0 by Hamada et al.
(Hereafter Hamada, 2007 [10]), (2) Kirin by Belleman et al.
(Belleman,2007 [4]) , (3) the algorithm proposed by Nyland
et al. for the GPU Gems 3 (Nyland, 2007 [24]), and (4)
the modified algorithm proposed in this work. Since we did
not have the original source code for Kirin’s implementa-
tion, the corresponding results were measured through our
own implementation of their method as they describe it in
their paper. We also considered the results of the tree al-
gorithm executed on a CPU with the highly-optimized code
“Phantom-GRAPE (GRAvity PipE)“ developed by Nitadori
et al. [23] 3. The “Phantom-GRAPE” was highly optimized
using Intel’s streaming SIMD extensions (SSE) in the assem-
bly language, and is known to be one of the fastest variations
of the tree algorithm for general-purpose processors. Plum-
mer spheres with 65,536 and 4,194,304 particles were used
for the direct algorithm and the tree algorithm, respectively.
We set a softening parameter ¢ = 0.025.

For the direct O(N?) calculations, all four variations of the
GPU implementation showed a better performance than the
highly optimized CPU implementation “Phantom-GRAPE*.
The difference in the performance of the four implementa-
tions are as follows. The approach of (Belleman, 2007 [4])
and (Nyland, 2007 [24]) are essentially the same, except for
the number of threads. Since the approach by (Nyland, 2007
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[24]) uses a larger number of threads (32,768 against 2,048),
their implementation exhibited a better performance. The
performance of CUNBOODY-1.0/(Hamada, 2007 [10]) was
poor due to an overhead of the force reduction since it was
designed to operate efficiently with the tree algorithm. This
problem and the details of our proposed approach will be
explained later.

As clearly shown in Figure 3 (a), our new code is much
faster than other codes for the tree algorithm. It has a speed
performance that is 2.4 times that of the previous GPU im-
plementations and 3.2 times faster than that of optimized
CPU codes. For the Flops count, we used a unified op-
eration count of 38 for the calculation between a pair of
particles (see section 3.1 for details). On the other hand,
for the previous tree algorithms, the performance gains by
the GPU were almost negligible (Belleman, 2007 [4]) and
(Nyland, 2007 [24]) or were fairly small (Hamada, 2007 [10])
compared to CPUs. In order to explain why the increase in
performance is small, we first describe the main concepts of
the past implementations.

Historically, the task of extracting fine-grained parallelism
from tree algorithms started with Barnes’ modified tree al-
gorithm on vector processors[3]. This was followed by a
few attempts to run a similar method on the GRAPE [16],
GRAPE-3 [1], GRAPE-5 [13], and on parallel GRAPE-6
hardware [17]. They were able to achieve a speed roughly 10
times faster than that of the fastest parallel code on general-
purpose parallel computers. [17]

More recently, there has been a large amount of interest
in porting these algorithms to GPUs. In order to clearly de-
scribe the differences between the different GPU implemen-
tations of the tree algorithm, we will introduce a conceptual
diagram of the basic components of the GPU calculation
in Figure 4. Each row corresponds to a thread in the GPU,
and each group of rows corresponds to a SIMD block (thread
block). The horizontal axis indicates the time of processing,
and the blue circles indicate threads.
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Figure 5: Implementation of the GPU code reported
by Nyland et al.[24] and Belleman et al.[4]

There were two approaches in the previous GPU imple-
mentation of the tree algorithm. Figure 5 shows the first
approach taken by Nyland et al. [24] and Belleman et al.
[4]. Each orange block represents a thread-block described
in Figure 4.

The pictures from Figure 2 are also inserted to clearly de-
pict which part is being parallelized, and which part is being
processed sequentially. For brevity we shall call the target
particles “i-particles” and the source particles “j-particles”.
Nj; is the number of i-particles in the terminal cell, and N;
is the number of j-particles that interact with it. In this
GPU implementation, each thread calculates the force on a
different i-particle— we call this the “i-parallel” approach. In
this method, when the number of i-particles in a walk Ny
(which shares the same interaction list as the j-particles)
is smaller than the number of physical processor units, the
rest of the processors remain idle. Since the optimal Ny
for GPUs is typically of the order of several hundreds, the
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Figure 6: Implementation of GPU code reported by
Hamada et al[10]
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Figure 7: Implementation of the novel GPU code
reported by this paper —the multiple walks method



efficiency of processor usage tends to be low in this imple-
mentation. Belleman et al. [4] use a large N, —up to 32,768
to obscure this inefficiency.

An alternative approach proposed by Hamada et al. [10]
is shown in Figure 6. In this case, the so-called “j-parallel”
approach is used in addition to the ¢-parallel approach. The
j-particles are divided into several groups, and the partial
forces on the i-particles are calculated by different blocks.
Multiple threads on each block evaluate different i-particles.
The number of parallel i-particles is equal to the number
of physical processors divided by the number of thread-
blocks (Npiocks), which is usually smaller than Ngz. Thus,
the performance is better than that of the first approach.
However, the results of the kernel benchmarks (see Figure
3) show only a marginal increase in performance over the
Phantom-GRAPE. This is due to the overhead of the re-
duction operations required for the partial forces. Indeed,
in this approach, partial forces on an i-particle are calcu-
lated by different blocks. Thus, they need to be summed.
Unfortunately, the reduction operations on a GPU are slow
due to the large overhead in the thread synchronization.
There is a report available on the reduction operations that
run on GPUs [26]. However, it is only valid for reductions
of large arrays with thousands of elements. Therefore, the
fastest method for the reduction of small arrays is to use the
host CPU. Hence, the amount of communication between
the GPU and the host CPU increases by Nyiocks-

2.3 Details of proposed code

In this section, we explain the details of our novel ap-
proach and present its advantages over previous approaches.
The remaining problems and their possible solutions will also
be discussed.

Figure 7 shows our new effective implementation of the
tree algorithm on GPUs. The main idea comes from viewing
each thread block as one GRAPE, and mapping the previous
tree-GRAPE algorithm accordingly. In our method, multi-
ple walks are evaluated by different GPU blocks in parallel.
In previous implementations, only a single walk was calcu-
lated at a time. In Figure 7, the operations of three blocks
are depicted. The threads in each block evaluate different
i-particles of the same walk. The sequence of the algorithm
is as follows:

1. First, the data of the multiple walks are prepared on
the host CPU, i.e. the lists of i-particles and j-particles
of each walk are prepared. The number of walks in
each calculation is determined by the size of the GPU
global memory.

2. Multiple walks are then sent to the GPU.

3. Calculations are performed. The GPU is partitioned
so that each GPU block evaluates a single walk.

4. The forces calculated by the different blocks in the
GPU are received in a bundle.

5. The orbital integration and other caculations are per-
formed on the host CPU.

6. The process is repeated.

A pseudo C++ code (emulator) for one GPU call from
the host is as follows:

void force_nwalk(
floatd xil],
float4 xj[1,
float4 accpl],
int ioff[],
int joffl[l,
int nwalk)
{
// block level parallelism
for(int iw=0; iw<nwalk; iw++){
int ni = ioff[iw+1] - ioff[iw];
int nj = joff[iw+l] - joff[iw];
// thread level parallelism
for(int i=0; i<ni; i++){
int ii = ioff[iw] + i;

float x = xil[ii].x;
float y = xi[ii].y;
float z = xi[ii].z;
float eps2 = xil[ii].w;
float ax = 0;

float ay = 0;

float az = 0;

float pot = 0;

for(int j=0; j<nj; j++){
int jj = joffl[iwl + j;

float dx = xj[jjl.x - x;
float dy = xj[jjl.y - v;
float dz = xj[jjl.z - z;
float r2 = eps2 + dx*dx + dyxdy + dzxdz;

float r2inv = 1.f / r2;

float rinv = xj[jjl.w * sqrtf(r2inv);
pot += rinv;

float r3inv = rinv * r2inv;

ax += dx * r3inv;

ay += dy * r3inv;

az += dz * r3inv;

}

accpliil.x = ax;
accpliil.y = ay;
accpliil.z = az;
accp[ii].w = -pot;

In all the previous approaches, the outer most loop (walk-
loop) has been performed serially, and either the next i-loop
or the inner most j-loop has been mapped to the multiple
blocks of GPU. In our new approach, the outer most walk-
loop is mapped to the multiple blocks, hence we can fully
exploit the parallel nature of the GPU. Our approach has
several advantages. First, the reduction of partial forces is
no longer necessary since each walk is calculated in a block
and no j-parallelization is used. This solves the problem in
the previous approach proposed by Hamada et al. Second,
multiple walks are sent to a GPU simultaneously, and the
forces of the multiple walks are also retrieved from the GPU
at the same time. This enables a more efficient communica-
tion between the CPU and GPU, since the number of DMA
requests decrease, and the length of each DMA transfer be-
comes longer. Third, it makes parallelization in the host
computation easier. Our approach involves the calculation
of multiple walks at the same time. Therefore, each thread
in the CPU can process a group of different walks in parallel.

Thus, we have successfully developed a novel tree algo-
rithm that can be implemented efficiently on GPUs. Im-
plementation results (see Figure 3) show that our new algo-
rithm has a speed performance that is 2.4 times that of the
previous GPU implementations and 3.2 times faster than
that of optimized CPU codes.



Figure 10: Snapshots of the simulation with 64M particles at z =18.8 (left), z = 4.5 (middle left), z = 2.6

(middle right), and z = 0 (right).
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3. GPU TREE APPLICATION

In this section, we present a cosmological N-body simu-
lation that uses our novel algorithm, on a GPU cluster. We
used CentOS for the machines that used x86_64 linux (ver-
sion 5.1) as the operating system, and OpenMPI (version
1.3.1) for the implementation of the message passing inter-
face. The CPU code was written in C+4 and compiled with
the GNU compiler collection (version 4.1.2). The GPU code
was also written in C++ and complied with the NVIDIA
CUDA compilation tool (version 2.0), respectively.

3.1 Performance validation

We performed a cosmological N-body simulation of a sphere
of radius 136.28 Mpc (mega parsec) with 1,608,044,129 par-
ticles for 327 timesteps. We assigned initial positions and
velocities to particles of a spherical region selected from a
discrete realization of a density contrast field based on a
standard cold dark matter scenario. A particle represents
8.20 x 10 solar masses. We performed the simulation from
z = 21.1, where z is red-shifted, to z = 18.5. Figure 10
shows images of the simulation with 64M particles.

The change in the performance with the evolution of the
system is shown in Figure 8, along with its breakdown in
Flgure 9. Here, we use an operation count of 38 opera-
tions per interaction. The floating point operation count
used by previous Gordon Bell winners for hierarchical N-
body simulations has always been 38 both on general and
special purpose computers [30, 28, 14, 13]. The 38 comes
from the method of calculating gravity using the Newton-
Raphson method with an initial guess by Chebyshev inter-
polation [12]. It is close to 36 when a division and a square
root are counted as ten floating point operations, respec-
tively. Although this operation count strictly holds for only
CPUs and GPUs can perform division or square root op-
erations with lower cost than those for 10 multiplications
or additions, we adapt this operation count once again in
our calculations for the sake of comparability as an “equiv-
alent CPU Flops” rather than a “GPU Flops”. Note that
the operation count of the other GPU implementations we
compared with (Nyland et al. [24], Belleman et al. [4]) were
corrected to 38 when we compared the Flops with theirs in
this paper. Due to the evolution of a large-scale structure in
the universe, the number of interactions increased, and as a
result, the performance also increased. After 150 steps the
performance reached a constant state.

In total, the number of particle-particle interactions was
6.19 x 10'. This implies that the average length of the
interaction list was 11,765. The whole simulation took 5,604
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y = f(N), where y is the time, and N is the number
of particles.

s, which included I/O operations, and the resulting average
computing speed was 42.15 TFlops.

It should be noted that our modified tree algorithm per-
forms a larger number of operations than the conventional
tree algorithm that runs on a general purpose microproces-
sor. In order to rectify this, we estimated the operation
count of the original tree algorithm for the same simula-
tion based on the data of a simulation image (at z = 19.66)
and the same accuracy parameter. The number of interac-
tion counts was then found to be 4.12 x 10*®. The effec-
tive sustained speed is hence 28.1 TFlops and the resulting

price/performance ratio is thus equal to a mere $8.15/GFlops.

Finally, it should also be noted that our modified tree
algorithm is more accurate than the original tree algorithm
for the same accuracy parameter, as shown in [3][14].

4. GPUFMM CODE

4.1 FMM on GPUs

The FMM by Greengard and Rokhlin [8] also uses the
tree structure but calculates cell-cell interactions, instead of
particle-cell interactions. In order to execute the FMM effi-
ciently on the GPU, the following modifications were made
to the FMM. First, the complex spherical harmonics were
transformed to real basis functions, in order to avoid com-
plex arithmetic on the GPU. Second, in order to minimize
the memory usage per interaction, all of the translation ma-
trices were generated on-the-fly. This extra work load is not
included in the Flops count. Third, the box structure and
interaction list of the FMM are restructured and renumbered
to match the number of threads per block, so that no threads
remain idle, while the data can be continuously transferred
to the shared memory in a coalesced manner. Finally, the
same multipole walks technique described in section 2.3 is
implemented for all stages of the FMM algorithm.

The FMM is composed of the particle interaction (P2P),
multipole expansion from particle (P2M), multipole to mul-
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Figure 12: Cputime of the FMM on parallel GPUs

tipole translation (M2M), multipole to local translation (M2L),
local to local translation (L2L), and local expansion to par-
ticle (L2P). We will describe the details of the GPU imple-
mentation of each component by explaining what variables
are passed to the GPU, which of them are stored in the
shared memory, and how they are used in the GPU kernel.

For the P2M calculation, the coordinates and particle
strengths are stored in the shared memory. The expan-
sion coefficients are also stored in the shared memory before
they are copied to the global memory in a coalesced manner.
Each thread block handles one FMM box, and each thread
handles one expansion coefficient. Using the coordinates in
the shared memory and the center of expansion in the reg-
ister, the recurrence relation is calculated, and the resulting
expansion coeflicients are then copied to the global memory.

For the M2M, M2L, and L2L, the expansion coefficients,
the order of expansion, box size, and interaction list of FMM
boxes are passed on to the GPU. The shared memory in this
case is occupied by the expansion coefficients. Again, each
thread block handles one FMM box while each thread han-
dles one target expansion coefficient. The calculation loops
through the interacting boxes, and a unique index describ-
ing the relative position of the target box and source box
is calculated. This index is used to extract a precalculated
Wigner D matrix from the global memory. The expansion
coefficients are rotated using this matrix. Then, the recur-
rence relation for the translation is calculated without any
global memory access. Finally, the expansion coefficients are
rotated back.

For the L2P, the coordinates and expansion coefficients
are stored in the shared memory. For the calculation of
Eq. ((1) the velocity u; is also stored, and for Eq. (3) the
change rate of vortex strength Da;/ Dt is also stored in the
shared memory before it is written to the global memory in
a coalesced manner. Each thread block handles a portion
of the particles in the FMM box, while each thread handles
one particle. The calculation loops through all expansion
coeflicients and calculates Eq. (1) or (3) without any global
memory access. Finally, the results are copied to the global
memory in a coalesced manner.
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Figure 13: Decay of kinetic energy

4.2 Vortex method

The vortex method [15] is a particle based method for
fluid dynamics simulations. The particle based discretiza-
tion allows the continuum physics to be solved as a N-body
problem. Therefore, the hierarchical N-body methods that
extract the full potential of GPUs can be used for the simula-
tion of turbulence. Unlike other particle based fluid dynam-
ics solvers e.g. SPHJ[7], the vortex method is especially well
suitable for solving turbulence, because the vortex interac-
tions seen in turbulent flows are exactly what it calculates
using the interacting vortex particles.

Since the vortex method is neither a standard method for
simulating turbulence or a standard application for FMMs,
we will give a brief explanation of the method itself. In the
vortex method, the Navier-Stokes equation is solved in the
velocity-vorticity form, and discretized with vortex particles.
The velocity is calculated by

N
u; = Zajgg x VG (1)

j=1

where « is the strength of vortex particles. G = 1/4xr;; is
the Green’s function for the Laplace equation and

= T [ r2
= erf i\ 4 i T 9
g o ( 20?) T 2032- xp < 20]2-) (2

is the cutoff function, where r is the distance between the
interacting particles, and o is the standard deviation of the
Gaussian function. The vorticity equation is solved in a
fractional step manner by calculating the stretching

Dai n
S = > a;V(ge x VG) - aui. (3)
j=1
and the diffusion
o’ =2ut (4)

separately. We perform a radial basis function interpolation
for reinitialized Gaussian distributions [31] every 100 steps
to ensure the convergence of the diffusion calculation. The
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Figure 14: Energy spectra at ¢/T = 10

second order Adams-Bashforth method is used for all time
integration calculations. Eqs. (1) and (3) involve far field
interactions and can be solved using hierarchical N-body
algorithms, such as the FMM.

4.3 Performance validation

In order to evaluate the performance of the present GPU
calculation, we first measured the performance of a serial
GPU. The particles are randomly positioned in a [—71',71']3
domain, and given a random vortex strength between 0 and
1/N. The core radius is set to o = 2rN~/3, which results
in an average overlap of o/Ax = 1.

We now present the results of the velocity calculation in
Eq. (1) using the FMM on a serial CPU and GPU. The order
of multipole expansions is set to p = 10 unless otherwise
noted. Figure 11 shows the calculation time of the FMM on
a serial CPU and GPU. Our FMM does not scale exactly as
O(N), but rather shows a scaling close to O(N'*®). This
is observed from the results of both the CPU and GPU.
Judging from the asymptotic constants of the two lines, the
FMM on the GPU is approximately 80 times faster than the
FMM on the CPU.

The optimum level of the oct-tree differs between the CPU
and GPU calculations. The number of particles per termi-
nal cell Ny ranges from 100 to 800 for the present FMM on
GPUs. The optimal Ny for the FMM on the CPU ranges
from 20 to 160. Thus, the optimum level of the FMM on
GPUs is lower then the one on CPUs for small N, but seems
to shift more frequently as N becomes larger. This is also
reflected in Figure 11, where the calculation time of the
GPU seems to have a better scaling than the dotted line
of O(NLIS)

Figure 12 shows the calculation time of the parallel FMM
using different number of GPUs. The low parallel efficiency
for small N is a direct consequence of the low performance
of GPUs for small N. Especially, when the FMM is paral-
lelized the number of target particles handled by each GPU
becomes N/nprocs, and high parallel efficiency can only be
achieved when N/nprocs is large. It is also seen in Fig-
ure 12 that the calculation time for N < 10* increases for



Table 1: Number of floating point operations for the vortex method calculation

Description Equation Value
Total number of particles N 16,777,216
Number of level of cell subdivisions Nievel 5
Average number of particles in a cell Neeyp = NJ(8Ntever) 512
Average number of source particles N; =27Ncen 13,824
per target particle
Operations per pair wise velocity (Eq. (1))+ || K 133
stretching (Eq. (3)) interaction

| Operations per time step [ KNN; [ 3.08 x 10" |

256

N 128

256

256 1

(a) Spectral method

256

N 128

256

(b) Vortex method

Figure 15: Isosurface of the second invariant (II) of
the velocity derivative tensor

nprocs >= 16. This is because the time spent on commu-
nication becomes large compared to the calculation time.
The communication time increases monotonically as nprocs
increases, and dominates the calculation at nprocs = 256.

5. GPU FMM APPLICATION

5.1 Calculation Conditions

The flow field of interest is a decaying isotropic turbu-
lence with an initial Reynolds number of Rey =~ 100. The
calculation domain is [—,n]® and has periodic boundary
conditions in all directions. Details of the periodic FMM
are shown in our previous publication [31]. The number of
calculation points was N = 256% = 16, 777, 216 for both the
vortex method and spectral method. The order of multipole
expansion was set to p = 10, and the number of periodic
images was 2% x 2% x 2% for the present calculations. We
used a total of 256 GPUs for the calculation of the isotropic
turbulence.

The spectral Galerkin method with primitive variable for-
mulation [25] is used in the present study as reference. A
pseudo-spectral method was used to compute the convolu-
tion sums, and the aliasing error was removed by the 3/2-
rule. The time integration was performed using the fourth
order Runge-Kutta method for all terms. No forcing was ap-
plied to the calculation, since it would be difficult to do so
with vortex methods. The spectral method was calculated
on the same number of processors without using the GPUs.

The initial condition was generated in Fourier space as a
solenoidal isotropic velocity field with random phases and
a prescribed energy spectrum, and transformed to physical
space. The spectral method calculation used this initial con-
dition directly. The core radius of the vortex elements were
set to 2r/N'/? so that the overlap ratio was 1.

5.2 Calculation Results

Figure 13 shows the decay of kinetic energy, which is de-
fined as

N
1 2, 2 2
K_§;:1ui+vi+wi. (5)

Spectral is the spectral method and Vortex is the vortex
method calculation, respectively. The time is normalized
by the eddy turnover time 7. The integral scale and eddy



Figure 16: Photographs of the GPU cluster (left) and the GPU (right)

turnover time have the following relation.

L= i/k—lE(k)dk (6)

2u'?

T =L/ (7)

where u’ = %K . The homogeneous isotropic turbulence does
not have any production of turbulence, and thus the kinetic
energy decays monotonically with time. This decay rate is
known to show a self-similar behavior at the finial period
of decay. This is confirmed by the straight drop of K that
appears at the end of this log-log plot. The results of the two
methods agree perfectly until ¢/7" = 10, where the kinetic
energy drops an order of magnitude from the initial value.

Figure 14 shows the energy spectrum at t/7° = 10. k is
the wave number, and E(k) is the kinetic energy contained in
the wave number k. At this Reynolds number it is difficult
to observe an inertial subrange of k=%, nor a k* behavior
at low wave numbers. The results of the two methods are in
good agreement, except for the fact that the vortex method
slightly underestimates the energy at higher wave numbers.

The isosurface of the second invariant of the velocity deriva-
tive tensor IT = u; ju;; at time ¢t/T = 10 is shown in Figure
15. Figure 15(a) is the isosurface of the spectral method,
Figure 15(b) shows the isosurface from the vortex method
calculation. Although, the larger structures match between
the two methods, the smaller structures behave differently.
The difference in the small structures can also be observed
in Figure 14, where the kinetic energy at higher wave num-
bers do not match. However, since the energy spectrum of
the vortex method matches with the reference calculation
up to the dissipation scale (k &~ 30), it is sufficient for most
turbulent flow applications.

The total floating point operation count of our entire sim-
ulation is estimated to be around 3.08 x 106 for 1000 time
steps. The details of the estimation are shown in Table 1.
Only the direct summation part of the FMM is considered in
this estimation. The operation count of the kernel K = 133
was obtained by hand-counting the operators in the CUDA
code. The end-to-end measurement of the wall-clock time of
our vortex method simulation was 1,520 seconds. Thus, the

Table 2: Price of the GPU cluster

Elements Quantity Price (JPY) Price ($)
GPUs 256 12,160,000 $ 118,345
Host PCs 128 10,716,032 $ 104,292
Network switch 4 644,800 $ 6,275
Total 23,520,832 $ 228,912

Table 3: Comparison with SC06 GB finalist

’06 finalist This work Ratio

number of particles 2,159,038 1,608,044,129 745

price $ 2,384 $ 228,912 96
GFlops (uncorrected) 36.31 42,150 1,161
GFlops (corrected) 15.39 28,100 1,826
$/GFlops 158 8.5 19

average performance of our simulation was approximately
20.2 TFlops.

6. COST PERFORMANCE

We used 128 host PCs with 256 GPUs for the simulation.
Each PC had a CoreTM 2-Quad 2.4-GHz Q6600 processor
on an X38 chipset motherboard with a single Gigabit Ether-
net (GbE) port. A photograph of the GPU cluster is shown
in Figure 16.

The costs of the constituent elements of our GPU clus-
ter are summarized in Table 2. The prices of the GPU, the
host PC, and the three GbE network switches were 47,500
JPY, 83,719 JPY, and 161,200 JPY, respectively. The total
price of 128 GPUs, 128 PCs, and 4 switches was 23,520,832
JPY, which is equivalent to $228,912 (102.75 JPY = $1 on
April 4th 2008). All prices are inclusive of a sales tax of
5%. The sustained performance of 42.15 TFlops. The cor-
rected performance of the gravitational simulation in section
3 is 28.1TFlops, which results in a cost performance of 124
MFlops/$. The comparison with previous Gordon Bell win-
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ners is shown in Figure 17.

Compared to the Gordon Bell finalist of 2006 [13], the
number of particles used in the present gravitational simu-
lation is 768 times larger. Furthermore, the performance is
1870 times higher and the price/performance is 18.59 times
better as shown in Table 3. The correction factor of our cal-
culation is larger than that of theirs. This is due to the fact
that our calculation can use a relatively small Ny, because
the data transfer was faster (We used a PCI express gen2
x16 as to where they used a PCI-X). Another reason for the
different correction factor is the use of SSE and multicore
tuning in our host routines.

7. CONCLUSION

A hierarchical N-body simulation has been performed on
a cluster of 256 graphics processing units (GPUs). Using
this fast N-body solver, A gravitational N-body simulation
using 1,608,044,129 particles was performed as a standard
benchmark. In addition, the vortex particle simulation of
homogeneous isotropic turbulence using 16,777,216 particles
was performed. The treecode was used for the gravitational
simulation, while the FMM was used for the vortex particle
simulation.

With our approach, both the tree algorithm and FMM
show a significant performance gain when executed on GPUs
as compared to the performances of the hierarchical algo-
rithms running on CPUs. The previous implementations of
the hierarchical algorithms made it difficult to achieve an ef-
fective GPU performance, especially compared to their per-
formances on conventional PC clusters. Using our novel ap-
proach, however, a GPU cluster can outperform a PC cluster

from the viewpoints of cost/performance, power/performance,

and physical dimensions/performance. The gravitational N-
body simulation showed a sustained performance of 42.15
TFlops, while the vortex particle simulation showed a sus-
tained performance of 20.2 TFlops. The overall cost of

the hardware was 228,912 dollars. The maximum corrected
performance is 28.1TFlops of the gravitational simulation,
which results in a cost performance of 124 MFlops/$. The
correction is performed by counting the Flops based on the
most efficient CPU algorithm. Any extra Flops that arise
from the GPU implementation and parameter differences
are not counted.

The present acceleration technique enabled the calcula-
tion of a homogeneous isotropic turbulence using a moderate
number of vortex elements in a very short time. The kinetic
energy decay and energy spectrum of the well resolved vortex
method calculation agreed quantitatively with that of the
reference calculation using a spectral method. This opens
an interesting possibility for fluid dynamics simulations to
extract a large amount of computational power from future
many-core architectures at a minimum price/performance
by using hierarchical N-body methods.
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