Chapter 1

The Charm-+ Programming Model

Laxmikant V. Kale

Department of Computer Science, University of Illinois at Urbana-Champaign

Gengbin Zheng

National Center for Supercomputing Applications, University of Illinois at
Urbana-Champaign

1.1 Design Philosophy ........o.ouiiii 2
1.2 Object-based Programming Model ............. .. . .. ... . ... 3
1.3 Capabilities of the Adaptive Runtime System ............................ 7
1.4 Extensions to the Basic Model ............c...o i 10
1.5 Charm-++ EcoSyStem ..........o.iuiiiiii i 13
1.6  Other Languages in the Charm++ Family 14
1.7 Historical Notes 15
1.8 ConCIUSION .. .uitt i 16

CHARM++ [131] is a C++ based parallel programming system developed at
the University of Illinois. It has been designed and refined in the context of
collaborative development of multiple science and engineering applications, as
the later chapters in this book illustrate. The signature strength of CHARM++
is its adaptive runtime system, which allows programmers to deal with increas-
ingly complex supercomputers and sophisticated algorithms with dynamic and
evolving behavior. Its basic innovation is the idea of over-decomposition (ex-
plained further in Section 1.2): the programmer decomposes the computation
into objects rather than processors, and leaves the decision about which ob-
ject lives on which processor to the runtime system. Specifically, some of the
benefits of CHARM++ to the programmer include:

e Processor-independent programming: The programmer decomposes the
computation into logical units that are natural to the application, un-
cluttered by the notion of what data is found on which processor, and
which computations happen on which processor.

o Asynchronous programming model with message-driven execution: Com-
munication is expressed in a highly asynchronous manner, without op-
portunities for the program to block the processor awaiting a remote
event. This model is supported by message-driven execution, where the
processor-level scheduler selects only those computations for which all
data dependencies have been satisfied.
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o Automatic communication/computation overlap: Without any explicit
programming effort, the CHARM++ runtime ensures that processors are
not held up for communication, and that the communication is spread
more uniformly over time. This leads to better utilization of the com-
munication network, and to programs that are highly tolerant of com-
munication latencies.

e Load Balancing: The CHARM++ runtime automatically balances load,
even for applications where the load evolves dynamically as application
progresses. It can handle both machine-induced and application-induced
load imbalances.

e Resilience: CHARM++ applications can be automatically checkpointed
to disk, and restarted on a different number of processors, within mem-
ory limits. Further, CHARM++ applications can be made automatically
tolerant of node failures, automatically restarting based on in-memory
checkpoints when the system detects a failure, on machines where the
schedulers will not kill a job if one node dies.

The purpose of this chapter is to introduce the basic concepts in
CHARM++, and describe its capabilities and benefits for developing complex
parallel applications using it. The next chapter illustrates the process of de-
signing applications in CHARM++ with choices and design decisions one must
make along the way. A more thorough tutorial on how to design CHARM++
applications can be found elsewhere. For example, for online resources, see
http://charm.cs.illinois.edu.

1.1 Design Philosophy

To appreciate the features of CHARM++, it is necessary to understand the
main design principles that were used as guidelines when developing it.

The first of these principles has to do with the question: what aspects of
the parallel programming task should the “system” automate. The design of
CHARM++ is guided by the idea of seeking an optimal division of labor be-
tween the programmer and the system, i.e, we should let the programmers do
what they can do best, and automate those aspects that are tedious for the
programmer but relatively easy (or at least feasible) for a system to automate.
Some parallel programming systems are designed with the view that the sys-
tem should simply provide minimal mechanisms, such as basic communication
primitives, and get out of the way. This has the advantage that the applica-
tion developers are least constrained. An alternative is presented by the ideal
of a perfect parallelizing compiler: the programmers write (or better still, just
brings their own dusty deck) sequential code, and the system auto-magically



The Charm++ Programming Model 3

parallelizes it effectively for the target machine. The former approach is in-
adequate because it does not raise the level of abstractions, while the latter
has been seen to be unrealizable, despite valiant efforts. Seeking an optimal
division of labor between the application programmer and the system has led
to foundational design features in CHARM++.

The second design principle is to develop features only in an application-
driven manner. This is to counter a common and natural tendency among
computer scientists toward a platonic approach to design, which one could call
design in a vacuum: features are developed because they appear beautiful to
their developers, without serious consideration of their relevance to a broad set
of applications. To avoid this, CHARM++ evolved in the context of development
of parallel science and engineering applications, and abstractions or features
were added to it when the application use cases suggested them [118].

1.2 Object-based Programming Model

It is important to note that although CHARM++ is certainly a novel and
distinct parallel programming model, different than prevailing models such
as MPI, it is not a different “language” — code is still written in C4+'.
Programmers are only required to provide declarations of the methods that
are meant to be invoked remotely, so that the system can generate code to
pack and unpack their parameters automatically. Beyond that, one uses the
C++ API provided to make calls into the CHARM++ runtime system.

The basic innovation in CHARM++ is that the computation is broken down
by the programmer into a large number of objects, independent of the number
of processors. These objects interact with each other through asynchronous
method invocations (defined below). In such interactions and communications,
it is the objects that are named explicitly and not the processors; the program
is mostly free of the concept of a processor. This empowers the adaptive run-
time system at the heart of CHARM++ to place objects on processors as it
pleases, and to change the placement during the execution of the program.
This separation of concerns between the application logic and resource man-
agement is at the heart of many benefits that this programming model confers
on application developers.

These “migratable” objects, which are the units of decomposition in the
parallel program, are called chares’ in CHARM++. Of course, a CHARM-++

L Although there exist bindings for C and Fortran, we will focus on the C++ bindings in
this chapter. Most of the applications in the book are written in C++. It is also, of course,
possible to write most of the application in C or Fortran by using CHARM++ to express
all the parallel aspects, and calling sequential C and Fortran functions for the application
specific code.

2The ‘a’ in chare (\'tfar\) is pronounced like the ‘a’ in father and the ‘e’ is silent.
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program may also include regular C++ objects — but the runtime system
does not need to pay attention to them. Each such sequential regular C++
object is “owned” by a single chare (Figure 1.1(a)). So, they migrate with the
chare if the runtime system decides to migrate the chare to another processor.
The programmer’s view of the overall computation is that of many such chares
interacting with each other, as shown in Figure 1.1(b).
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FIGURE 1.1: Chare: a message-driven object

Let us examine a chare in isolation first, as shown in Figure 1.1(a): it is
a C++ object comprising data elements and private or public methods. Its
public methods are remotely invocable, and so are called “entry” methods. It
is the existence of these entry methods that distinguishes a chare class from
a plain C++ class. Chares can directly access their own data members, and
cannot usually access data members of other chares. In that sense, a chare can
be thought of as a processor as well. Since, typically, multiple chares live on a
real processor, we can call them “virtual” processors. Consequently, we have
called our approach the “processor virtualization” approach [127]; however,
it is important to note that it is significantly different than (but related to)
the relatively recent idea of OS wvirtualization made popular for the “cloud”
infrastructure by VMWare and Xen systems.

Asynchronous method invocation: A running object may execute code
that tells the runtime system to invoke an entry method on a (potentially)
remote chare object with given parameters. The programmer understands
that such method invocation is asynchronous: all that happens at the point
where the call is made is that the parameters are packaged into a message,
and the message is sent towards the chare object in question. It will execute
at some undetermined point in future. No return values are expected from
an asynchronous method invocation. If needed, the called chare will send a
method invocation to caller at some time in the future.

The execution model, from the point of view of the programmer, is as
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follows: an ongoing computation consists of a collection of chare objects and
a collection of entry method invocations that have been directed at these ob-
jects. The computation begins with construction of a designated main chare.
The user code in the constructor of the main chare may initialize the Read-only
variables . These should not be changed by user code afterwards. The run-
time system makes a copy of such variables available on each processor. The
constructor of the main chare typically contains user code that create chares
and collections of chares (see below), and thus seeds the overall computation.
On each processor, a message driven scheduler (Figure 1.2) in the runtime
system selects one of the entry method invocations targeted at some object
residing on its processor, unpacks the parameters for the invocation, and exe-
cutes the entry method on the identified object with the given parameters. In
the baseline model, it lets the method invocation continue to completion (see
Section 1.4 for exceptions), at which point control returns back to the run-
time scheduler. Since the asynchronous method invocations can be thought
of as messages, this aspect of the execution model is called message-driven

Message Queue m
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FIGURE 1.2: Message-driven scheduler

One of the major benefits of message-driven execution is an automatic
and adaptive overlap between communication and computation. There is no
call in CHARM++ that will block the processor waiting for some remote data.
Instead, control passes to some chare that already has some data waiting for
it, sent via the method invocation from a local or remote object. The time
an object is waiting for some communication from its remote correspondent
is thus naturally overlapped with computation for some other object that is
ready to execute.

A chare normally just sits passively. Whenever a method invocation (typ-
ically initiated asynchronously by some other chare) arrives at a chare, it
executes the method with the parameters sent in the invocation. This may
result in creation of some new asynchronous method invocations for other
chares (or even itself) that are handed over to the runtime system to deliver.
It changes its own state (i.e. values of its data member variables) as a result
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of the invocation. It then goes back to the passive state waiting for another
method invocation?.

The code inside each entry method can carry out any computation it wishes
using data completely local to its object. In addition, it can use data that has
been declared as read-only.

From the application’s point of view, a chare could be a piece of the do-
main (in “domain decomposition” methods used commonly in parallel CSE
applications). It may also be a data structure, or a chunk of a matrix, or a
work unit devoid of any persistent state. The programmer is responsible for
deciding how big the chare should be, viz. the grainsize of the chare. More on
that in the next chapter.

One can create a singleton chare instance dynamically, and the system will
decide on which processor to anchor it. All that happens at the call is that a
seed for the new chare is created, which captures the constructor arguments
for it; a seed-balancer dynamically moves the seeds among processors for load
balancing, until it is scheduled for execution on some processor by executing
its constructor, at which point we can assume that the chare has taken root
there. Chares can obtain their own global IDs (called prozies in CHARM++),
and methods can be invoked asynchronously using these proxies. Parallel pro-
gramming based on such dynamic creation of individual chares is useful in a
variety of situations, including combinatorial search.

For applications in science and engineering, we need a further abstraction:
multiple chares may be organized into a collection, and each chare belonging
to a collection can be named (and accessed) by an index. For example, one
may have a one-dimensional array of chares. One can then broadcast method
invocations to all the elements of a collection, or to a single named one. These
collections are called chare arrays. However, they are not limited to be simple
arrays. The index structures may define collections that are multi-dimensional
sparse structures (e.g. a 6-dimensional array, with only a small subset of pos-
sible indices being instantiated as chares). They can also be indexed by other
arbitrary indices, such as strings or bit vectors, but such usage is not common
in current CSE (Computational Science and Engineering) applications.

A single program may contain multiple chare arrays. These may arise from
multiple application modules, or a single module whose algorithm is more
naturally expressed in terms of multiple chare arrays. To communicate with
chares belonging to a chare array, one must get hold of a “proxy” — an object
that stands for (or refers to) the whole collection. A proxy is returned when
a chare array is first created. So, the code A[i].foo(x,y); specifies asyn-
chronously sending a method invocation for the method foo with parameters
%,y to the i’th object of a 1-dimensional array referenced via its proxy A. The

3The model up to this point is similar to the “actor” model developed by Hewitt, Agha,
Yonezawa,and others, with the possible exception of the idea of an explicit “mailbox” that
an actor has access to. More important points of departure come in the features described
after this point, and in the reliance of CHARM++ on its extensive adaptive runtime system.
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call immediately returns, while the method invocation is packaged and sent
to the processor where the " element resides.

Chare arrays support reductions and broadcasts over all its elements, but,
unlike in MPI-1 or MPI-2, these are both asynchronous non-blocking opera-
tions. (MPI-3 standard has now adopted non-blocking collectives). A broad-
cast can be initiated by any element or even from other chares not belonging
to the target chare array. In our example above, A.foo(z,t) will result in
asynchronous invocations of the foo method of all the member chares of A
— a broadcast. The system ensures that all the chares belonging to a chare
array receive the successive broadcasts in the same sequence. Reductions are
carried out via non-blocking “contribute” calls that allow other computations
to proceed while the result of the reduction (such as a global sum) is deliv-
ered to its intended target, via an entry method invocation or via a general-
purpose callback abstraction. In particular, the members of the chare array
over which the reduction is being carried out are free to execute other entry
methods while the reduction is in progress.

The chares belonging to a chare array are assigned to processors by the
runtime system (RTS) as shown in Figure 1.3; the RTS may change this
assignment at runtime as needed. A scalable location manager [153] keeps
track of which chares are on which processor, resulting in messages being
delivered quickly and with low overhead to the right processor.

Processor A

Processor C

Processor B

FIGURE 1.3: System view of chares
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1.3 Capabilities of the Adaptive Runtime System

The heart of the CHARM++ system, and its signature strength, is its adap-
tive runtime system. The primary responsibilities of the runtime system are:

1. To decide which objects reside on which processor, when they are created

2. To schedule (i.e. sequence) the execution of all pending entry method
invocations on the targeted chare objects on each processor,

3. To keep track of current location of each chare, in spite of chare migra-
tions, in a scalable and low-overhead manner,

4. To mediate communication between chares by delivering entry method
invocations to the correct target object on the processor where it resides.
And, finally

5. To migrate chares across processors, if needed, in response to runtime
conditions.

The CHARM++ programming model provides much flexibility to the run-
time system, in terms of placement of chares on processors, sequencing of
method invocations, and mediating and intercepting communication between
chares. The CHARM++ adaptive runtime system (RTS), thus empowered,
leverages this flexibility to optimize performance as the program executes.
Here, we will briefly discuss its capabilities in balancing load dynamically,
tolerating faults, optimizing communications, and managing power.

Dynamic Load Balancing: CHARM++ supports a large suite of load bal-
ancing strategies. Some of these strategies use measurements of computational
loads and communication graph between chares, which the RTS can readily
obtain because of its role in scheduling chares and mediating their commu-
nication. With CHARM++, load balancing can be thought of as a two-phase
process: the programmer decomposes the work (and data) into chares. This
division does not have to be perfect: i.e. significant variation in the work/size
of chares is permissible, since there are typically tens of chares on each pro-
cessor core. At runtime, the RTS assigns and reassigns chares to individual
processors, to attain such goals as better load balancing, and/or minimiza-
tion of communication volume. As the number of chares is much smaller than
the number of underlying data-structures elements (e.g. grid points, or mesh
elements), the load balancing decisions are much faster than, say, applying a
graph partitioner such as ParMETIS to the entire underlying structure. Oc-
casionally, chares may have to be split or merged to keep their size within a
desired range; CHARM++ supports dynamic creation and deletion of chare ar-
ray elements if needed. But this is not needed for most applications, and when
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its needed, it is still simpler than a complete repartitioning of the application
data structures.

The suite of strategies provided with CHARM++ includes some that ig-
nore communication volume and some that consider it. It also includes some
strategies that refine load balance, by moving a relatively small number of
objects from overloaded processors, and other schemes that comprehensively
repartition the object graph. For large machines, it includes strategies that
optimize placement with respect to the interconnect topology, and hierarchi-
cal strategies that significantly reduce decision time. Further, one can write
application-specific strategies (or new, general-purpose ones) using a relatively
simple plug-in architecture. Also, a meta-balancer that examines application
characteristics, to choose the appropriate strategy, and decide when to apply
it, has been developed recently.

Automatic Checkpointing: Parallel application developers often need to
write code for periodically checkpointing the state of their application to the
disk. Simulation runs are often long, and need to be broken down into seg-
ments that will fit within system-allowed durations; also, hardware failures
may cut short an ongoing simulation. Checkpoints allow one to handle such
situations without losing much computation. Since CHARM++ already has the
capability of migrating objects to other processors (with users providing in-
formation to optimize the amount of data saved, if needed), the RTS can
leverage this capability to “migrate” copies of objects to the file system, along
with the state of the runtime system itself. This reduces the burden on the
programmer as they do not need to write additional checkpointing code. Fur-
ther, when restarting, they can use a different number of processors than what
was used for the original simulation, e.g., a job that was running on 10,000
cores can be restarted on 9,000 cores! This works automatically for baseline
CHARM++ programs, and requires little extra programming for programs with
user-defined groups and node-groups (Section 1.4).

Fault tolerance: One can also make a CHARM++ application continue to
run in spite of individual nodes crashing in the middle of the execution!
CHARM++ offers multiple alternative schemes for this purpose. The most ma-
ture, and probably most useful for applications today, is the double check-
pointing scheme, which stores a checkpoint of each object locally and on a
buddy node. An automatic failure-detection component checks the “heart-
beat” of each node in a scalable and low-overhead manner. When a node fails,
the system effects a recovery by automatically and quickly restoring the state
of the last checkpoint. How quickly? We have measured restarts in hundreds
of milliseconds for a molecular dynamics benchmark on over 64k cores [260]!
Even on applications with very large checkpoints, it usually takes no more
than a few seconds. One can use spare processors or make do with remaining
processors on failure. For large runs, running with a few spares is inexpensive
and simplifies the load balancing the system must do after restart.

A more advanced scheme based on message-logging with parallel restart
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has also been developed [37, 36, 175]. With the double-checkpoint scheme (as
with any other checkpoint-restart scheme), when a node fails, all the nodes
must be rolled back to their checkpoints, wasting energy and wasting a lot
of computation. With our message-logging schemes, when a node fails, only
its objects restart form the checkpoint, while the others wait. The restarting
objects can recover in parallel on other processors, thus speeding recovery. It
does require storing of messages at the senders, which can add to memory
overhead. Many strategies aimed at reducing this overhead have been devel-
oped [176]. This scheme is expected to be more important beyond Petascale,
when node failures are likely to be frequent.

Power Management: Power, energy and temperature constraints are be-
coming increasingly important in parallel computing. CHARM++, with its in-
trospective runtime system can help by monitoring core temperatures and
power draw, and automatically changing frequencies and voltages. It can rely
on its rate-aware load balancers (i.e. strategies that take into account the
different speeds of different processors) to optimize either execution time or
energy, while satisfying temperature and total-power constraints. As an illus-
tration [219, 220], we were able to reduce cooling energy in a machine room
by increasing the A/C thermostat setting; of course, that may lead to some
chips overheating. However, the CHARM++ runtime system monitored chip
temperatures periodically, and lowered the frequencies of chips that were get-
ting too hot, while increasing them if they were cold enough. This creates a
load imbalance which would slow the whole application down, as the rest of
the processors wait for data from the processor whose frequency was lowered.
However, the runtime is able to rebalance load by migrating objects after such
frequency changes. These power-related features are available only in experi-
mental versions of CHARM++ at the time of this writing, but are expected to
be more broadly available in near future.

Communication optimizations: The CHARM++ runtime system is contin-
ually observing the communication patterns of the application, since it is de-
livering messages to chares. It can replace communication mechanisms based
on the observed patterns. For example, algorithms for collective communica-
tion can be changed at runtime, between iterations of an application, based
on the size of messages, number of nodes, and machine parameters [144].

1.4 Extensions to the Basic Model

In section 1.2 we described the basic CHARM++ programming model, con-
sisting of chares, indexed collections (arrays) of chares, asynchronous method
invocations, broadcasts and reductions. This baseline description is very useful
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for developing an intuition about the programming model, and its underlying
operational semantics (or execution model). A few important extensions to
the base model, which enrich the programming model without changing its
essential character, are noted below. These “extensions” are as mature and
old as CHARM++ itself, and are in common use in applications today.

Supporting “blocking” calls: CHARM++ supports two additional kinds of
methods, specifically tagged as such, that do allow “blocking” calls. They do
not block the processor; only the affected entry method is paused, and control
is returned to the scheduler. These are called Structured Dagger methods
and threaded methods, as explained below.

A Structured Dagger (also abbreviated sdag) entry method allows users
to define a DAG (directed acyclic graph) between computations within a chare,
and asynchronous method invocations expected by the chare. This typically
allows one to express the life cycle of a chare object more clearly than a baseline
program would. An important statement in the structured-dagger notation is
the so-called when statement, which specifies (1) that the object is ready to
process a particular entry method invocation, and (2) what computation to
execute when this method invocation arrives.

Just to give a flavor of how sdag code looks like, we present a snippet of
code below. This comes from a molecular dynamics example, discussed briefly
in the next chapter. But that is not important here; we are just illustrating
the structure of sdag code. The “run” method of this chare includes a time
step loop. In each time step t, the run method waits for two invocations of
coordinates method, and when both are available executes some sequential
object methods atomically. The sequential code calculates forces on each set
of atoms C1 and C2 due to the other set of atoms, and sends the resultant
forces back. Since this is not usual C++ code, sdag entries are specified in a
separate file, which is translated into C++ code. One can thus think of sdag
code as a script for describing data-dependent behavior of a chare. Typically,
it describes the entire life cycle of a chare, as signified by the name, “run”
method, in this particular case.

1| entry void run() {

2 for (t=0; t<steps; t++) {

3 when coordinates(vector <Atom> C1),
4 coordinates (vector <Atom> C2)
5 serial {

6 calculateInteractions (Cl, C2);
7 sendForcesBack () ;

8 }

9 }

| };

When a threaded method is invoked the runtime system creates a
lightweight user-level thread and starts a method invocation inside this thread.
A threaded entry method can block waiting for a future [99], or for a return
value from a synchronous method invocation. Correspondingly, the system al-
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lows users to define entry methods that return a value, as well as a simple
future abstraction. One can create a future, set value to it, or access value
from it (which is a blocking call). If a thread tries to access the value of a
future, and the value is not set yet, the thread is blocked, and control is trans-
ferred to the CHARM++ scheduler. Later, when the value is set, the thread is
added back to the scheduler’s queue, so it can be resumed in its turn.

Array Sections: A subset of chares belonging to a chare array can be orga-
nized into a section, somewhat like an MPI sub-communicator. One can invoke
broadcasts and reductions over sections as well. The system organizes efficient
spanning trees over the subset of processors that house elements belonging to
a section. It ensures that the broadcasts and reductions are carried out cor-
rectly even when element chares migrate to other processors, and reorganizes
the spanning trees periodically, typically after a load balancing phase.

Processor-awareness: Another extension has to do with awareness of pro-
cessors by the programmer. In the model described so far, there is no need for
the programmer to know anything about the processors, including which pro-
cessor is the current location of a particular object. However, there are some
situations in which an “escape valve” into processor-aware programming is
needed. This is especially true for libraries, or performance oriented optimiza-
tions. For example, many objects on the same processor may request the same
remote data; it makes sense in this situation to use a shared processor-level
software cache; Requests for remote data can go via this cache object, and if re-
quested data was already obtained due to another chare’s request, unnecessary
remote communication is avoided. For such purposes, CHARM++ provides a
construct called chare-group. Just like an array of chare objects, a chare-group
is a collection of chares. However, (1) there is exactly one member mapped
to each processor, and (2) unlike regular chares, chare group members are
allowed to provide public methods that are invoked directly, without needing
the packaging and scheduling of method invocations. Also, given the group ID,
the system provides a function that returns a regular C++ pointer to the local
(branch) chare of the group. With these two features, chares can communi-
cate using low-overhead function calls with the member (“branch”) of a group
on their processor. Note that such group objects also allow additional data
sharing mechanisms [228] beyond the read-only variables mentioned earlier.

So far, we intentionally left the notion of what we mean by a “processor”
only loosely defined. In CHARM++, for processor-aware programming, there
is a notion of PE (processing element). A PE corresponds to a single sched-
uler instance; a CHARM++ application may associate a PE with a hardware
thread, a core, or a whole or a part of a multicore node, based on command-line
options. If a PE includes multiple hardware resources (say cores), the paral-
lelism within a PE is managed by the user orthogonally, by using pthreads,
openMP, or CHARM++’s own task library (called CkLoop). Associating a PE
with a hardware thread is a common practice in current CHARM++ applica-
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tions, and it obviates the need to deal with an additional level of parallelism,
so we will assume this in our description.

Of course, the group construct and other such low-level features should
be used sparingly. As a design guideline, one should strive to avoid using
processor-aware programming as much as possible, and push it into low-level
libraries when needed. The example in the above paragraph, involving multi-
ple requests for remote data, is a common enough feature that a new library,
CkCache, has been developed as a common library for use by multiple appli-
cations. The system libraries for implementing asynchronous reductions are
another example. Although one could implement a spanning tree over all the
chares of a chare-array, it is much more efficient to do a processor (and node)
based spanning tree, collecting inputs from all the local chares first.

Since objects may be migrated by the runtime system to other processors,
CHARM++ also supports a special callback method that gets called after the
object has been re-incarnated on another processor; this can be used to up-
date any processor-specific information, such as pointers to local branches of
groups, stored by the objects.

1.5 Charm++ Ecosystem

CHARM++ is a mature and stable parallel programming system. Thanks to
the popularity of applications such as NAMD, it is used by tens of thousands
of users worldwide (The biomolecular simulation code NAMD, described in
Chapter 4, has 45,000 registered users, as of December 2012). CHARM++ is
available on most national supercomputer installations in the US. CHARM++
runs on almost all the parallel computer types that are widely known, includ-
ing Cray machines, IBM Blue Gene series machines, Linux Clusters, Windows
clusters etc. It supports multiple network types including proprietary net-
works on supercomputers, as well as commodity networks including Ethernet
and Infiniband. CHARM++ is regression-tested via a nightly build system on
dozens of combinations of compilers, operating systems, processor families and
interconnection networks.

The maturity of CHARM++ is also reflected in the ecosystem of program
development and analysis tools available for it. Projections is a sophisticated
performance visualization and analysis tool. CharmDebug is a more recent and
highly sophisticated debugging tool. In addition, the LiveViz library can be
used to collect application or performance data during application run and
visualize it as the program is running. The CCS (Converse Client-Server) li-
brary that underlies LiveViz also allows one to develop interactive parallel
applications, whereby queries or messages can be injected into a running com-
putation, either to examine specific attributes of a running simulation, or to
effect changes in the execution of the application.
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There are several online resources for learning CHARM++ and working
with it. The software, manuals, tutorials and presentations, are available at
http://charm.cs.illinois.edu. An active mailing list (charm@cs.illinois.edu) is
used for reporting bugs and discussing programming issues and upcoming
features. There is an annual workshop on CHARM++ and its applications in
Urbana Illinois; the presentations from the workshop (startin in the year 2002),
most including the video of the presentations, are also available online.

1.6 Other Languages in the Charm-++ Family

CHARM++ is just one instance of a broader programming paradigm based
on message-driven execution, migratable work and data-units, and an intro-
spective and adaptive runtime system. Although CHARM++ is the earliest
member of this family of programming languages there are a few others that
we have developed that deserve a mention here. All of these are built on top of
CHARM++, as CHARM++ turns out to be an excellent backend for developing
new abstractions within this broad paradigm.

XMAPP is the name we have chosen for the abstract programming model
that underlies CHARM++ as well as all the other languages described below.
XMAPP is characterized by a few defining attributes:

e Over-decomposition: the interacting entities, be they units of work or
units of data (or a mix of the two, as in CHARM++), into which the
computation is decomposed by the programmer in such models are in-
dependent of the number of processors, and typically their number is
much larger than the number of processors.

e Processor-independence: the interaction/communication between enti-
ties is in terms of names of those entities and not in terms of processors.

e Migratability: these entities can be migrated across processors during
program execution, either by the runtime system, or the application
itself, or both.

e Asynchrony: collectives and other communication-related operations are
designed so that their implementations do not block the processor.

e Adaptivity: the runtime system takes responsibility of balancing load by
leveraging its ability to migrate objects.

Adaptive MPI (AMPI) is an implementation of the MPI standard on top
of CHARM++. In MPI, the computation is expressed as a collection of pro-
cesses that send and receive messages among themselves. With AMPI, each
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MPI process is implemented as a user level thread. These threads are em-
bedded inside CHARM++ objects, and are designed to be migratable across
processors with their own stack. As with CHARM++, multiple “processes” (i.e.
MPI ranks) are typically mapped to a single core. Standard MPI calls, such as
those for receiving messages, provide natural points to allow context switching
among threads within a core, thus avoiding complexities of preemptive con-
text switching. AMPI programs have shown to have comparable performance
(somewhat slower for fine-grained messaging, but comparable for most ap-
plications) as the corresponding MPI program, even when no AMPI-specific
features are being used. Those features, such as over-decomposition (and adap-
tive overlap of communication with computation), asynchronous collectives,
load balancing, and fault tolerance, provide the motivation for using AMPI
instead of plain MPI implementations.

MSA (Multiphase Shared Arrays) [51, 179] is a mini-language on top of
CHARM++ that supports the notion of disciplined shared memory program-
ming. It is a partitioned global address space (PGAS) language. The program
here consists of a set of migratable threads and a set of data arrays. The data
arrays are partitioned into user-defined “pages”, which again are migratable
data units implemented as chares. The main point of departure for the lan-
guage is the notion of access modes. Each array may be in one of the few
possible modes, such as “read-only” or “accumulate”. All the threads must
collectively synchronize to switch the mode of an array. This model is shown
to avoid all data races, and yet captures a very large fraction of use cases
where one would find shared global data useful.

Charisma [108] is a language that allows elegant expression of applications or
modules that exhibit a static data-flow pattern. The computation is divided
into chares. If the chares exchange the same set of messages (with different
lengths and contents, to be sure) in every iteration, one can express the life-
cycle of entire collections of chares in a simple script-like notation, where
entry-methods are seen to publish and subscribe to tagged data.

Charj [179] is a compiler supported language that provides the same ab-
stractions as CHARM++ combined with MSA. With compiler supported static
analysis, Charj provides a more convenient and elegant syntax, automatic gen-
eration of serialization code, and several other optimizations based on static
analysis. Charj is an experimental or research language at the current time.

1.7 Historical Notes

The precursors to CHARM++ (the “Chare Kernel”) developed by us were
aimed at combinatorial search applications, and at supporting parallel func-
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tional and logical programming. However, once we turned our attention to
science and engineering applications, we decided to mold our abstractions
based on the needs of full-fledged and diverse applications. The first two ap-
plications examined were fluid dynamics [95] and biomolecular simulations
[116]. These two (along with many small examples, and parallel algorithms
such as the Fast multipole algorithm, histogram-based sorting [120, 142]) ade-
quately demonstrated to us that our approach was avoiding the trap of being
too specialized. This was especially true because we considered full-fledged ap-
plications, in addition to kernels or isolated algorithms. We thought that only
by immersing ourselves in the nitty-gritty of developing a full-fledged applica-
tion, would we be able to weigh the importance and relevance of alternative
abstractions, and capabilities.

This position and approach towards development of abstractions were ex-
plicitly written down in a position paper around 1994 [118]. The biomolecular
simulation program NAMD funded by NIH (and NSF, in the early days,
under the “Grand Challenge Application Groups” program), provided us a
good opportunity to practice and test this approach. NAMD was developed
in collaboration with Klaus Schulten, a biophysicist with a computational ori-
entation, and Bob Skeel, a numerical analyst, both Professors at University
of Illinois.

1.8 Conclusion

We believe that CHARM++ and the underlying XMAPP abstract program-
ming model constitute an approach that is ready to deal with the upcoming
challenges in parallel computing, arising from increasingly complex hardware,
and increasingly sophisticated applications. It appears to us that the basic con-
cepts in XMAPP are going to have to be inexorably adopted by the commu-
nity, whichever language they choose to use in future. So, why not CHARM++7
CHARM++ itself is a production-quality system that has demonstrated its ca-
pabilities in improving programmer productivity and in attaining high scala-
bility on a wide variety of the parallel applications in science and engineering,
as demonstrated by this book. Some applications have demonstrated scaling
beyond half a million processor cores by now.

To simplify and ease adoption, CHARM++ supports interoperability with
MPI: some modules can be written in regular MPI, while others can be based
on CHARM++ or AMPI (or any of the other mini-languages in the CHARM++
family). We invite the readers to experiment with this approach by writing
modules of their applications in it, or by using an existing CHARM++ library
in their MPI application, or testing it by developing an isolated algorithm
using it, and then possibly moving on to developing entire applications using
CHARM++, and reap the productivity and performance benefits.
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