
 

 
Figure 1: Two renderings of a protein (BPTI) taken from a molecular 
dynamics simulation on Anton.  (a) The entire simulated system, with each 
atom of the protein represented by a sphere and the surrounding water 
represented by thin lines.  For clarity, water molecules in front of the pro-
tein are not pictured.  (b) A “cartoon” rendering showing important 
structural elements of the protein (secondary and tertiary structure). 
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ABSTRACT 
Anton is a recently completed special-purpose supercomputer  
designed for molecular dynamics (MD) simulations of  
biomolecular systems.  The machine’s specialized hardware  
dramatically increases the speed of MD calculations, making pos-
sible for the first time the simulation of biological molecules at an 
atomic level of detail for periods on the order of a millisecond—
about two orders of magnitude beyond the previous state of the art.  
Anton is now running simulations on a timescale at which many 
critically important, but poorly understood phenomena are known 
to occur, allowing the observation of aspects of protein dynamics 
that were previously inaccessible to both computational and  
experimental study.  Here, we report Anton’s performance when 
executing actual MD simulations whose accuracy has been vali-
dated against both existing MD software and experimental observa-
tions.  We also discuss the manner in which novel algorithms have 
been coordinated with Anton’s co-designed, application-specific 
hardware to achieve these results. 

1. INTRODUCTION 
Classical molecular dynamics (MD) simulations of biological 
molecules give scientists the ability to trace atomic motions and 
have helped yield deep insights into molecular mechanisms that 
experimental approaches could not have achieved alone [20, 21, 
30].  MD has been limited, however, by the rate at which these 
simulations can be performed on current computer hardware.  With 
discrete time steps on the order of femtoseconds (10–15 seconds), a 
particular challenge is to observe, in silico, functionally important  
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biological events that typically occur on timescales of many micro-
seconds or milliseconds, including the “folding” of proteins into 
their native three-dimensional structures, the structural changes that 
underlie protein function, and the interactions between two proteins 
or between a protein and a candidate drug molecule.  Such long-
timescale simulations pose a much greater challenge than simula-
tions of larger chemical systems at more moderate timescales, 
because increasing chemical system size allows for the exploitation 
of parallelism that is not available when extending a simulation in 
time. 

A variety of projects have focused on accelerating and parallelizing 
MD, both in general-purpose computers [1, 2, 9, 14], and in  
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Length 
(µs) 

Protein Hardware Software Citation 

1031 BPTI Anton [native] Here 
236 gpW Anton [native] Here 

10 WW domain x86 cluster NAMD [10] 
2 villin HP-35  x86 GROMACS [6] 
2 rhodopsin Blue Gene/L Blue Matter [25] 
2 rhodopsin Blue Gene/L Blue Matter [12] 
2 β2AR x86 cluster Desmond [5] 

 
Table 1:  The longest (to our knowledge) published all-atom MD 
simulations of proteins in explicitly represented water.   

 
Figure 2: Anton ASIC block diagram. 

specialized hardware [8, 27].  Recently, efforts to extend simula-
tions to longer timescales have concentrated primarily on commod-
ity architectures [1, 2, 14].  Important scientific and medical break-
throughs involving MD simulation may, however, come more 
quickly into range if it is possible to break off from the curve of 
commodity-based supercomputing.  We have designed Anton, a 
massively-parallel, specialized supercomputer, to perform MD 
computations today that might not otherwise be possible for years.   

This paper presents initial performance results from Anton and 
describes the relationships between algorithms and hardware that 
lead to its high performance.  Anton enables scientists to perform 
simulations at rates above 15 microseconds (μs) per day—roughly 
two orders of magnitude greater than the rates typically achieved 
by state-of-the-art parallel simulation packages running on the 
fastest general-purpose machines at practical levels of parallelism 
and efficiency (Section 5.1). 

The first 512-node Anton machine became operational in October 
2008, and has already completed an all-atom simulation of the 
protein BPTI (Figure 1) spanning more than a millisecond of bio-
logical time, along with several other simulations of up to 236 μs 
(Section 5.3).  By way of comparison, the longest all-atom protein 
simulation previously reported in the literature, which was per-
formed using the MD code NAMD, was 10 μs in length [10]; few 
others have reached 2 μs (Table 1). 

Anton’s performance advantage over other systems is the result of 
an algorithm/hardware co-design process in which the choice of 
algorithms impacted the design of the hardware, and vice versa 
(Section 3).  The algorithms that work efficiently with Anton’s 
specialized hardware, including some that were created specifically 
for Anton, differ in a number of ways from those that have proven 
most effective on general-purpose architectures.  We designed 
algorithms, for example, to increase the fraction of the computa-
tional workload that can be performed on fast, hardwired arithmetic 
pipelines.  We also developed parallelization and data choreogra-
phy methods that are closely tied to the distinctive characteristics 
of Anton’s various computational units and of its communication 
mechanisms.  In addition, we used customized-precision fixed-
point arithmetic both to reduce the area requirements of arithmetic 
units and to efficiently produce simulation results that are determi-
nistic, time reversible, and independent of the number of compute 
nodes (Section 4).  

We have validated Anton’s results by comparison to both existing 
MD software and experimental observations (Section 5.2).  A more 
difficult question is the extent to which the physical models  

typically employed in calculating inter-atomic forces permit the 
behavior of biomolecular systems to be elucidated over the very 
long timescales that, with the introduction of Anton, are now acces-
sible.  This question has not yet been fully answered, but our tests 
so far suggest that MD simulations may ultimately provide impor-
tant new insights into biological processes occurring on these time-
scales, and that such simulations may play a key role in testing and 
improving these physical models. 

2. BACKGROUND 
In this section, we summarize the components of MD computation 
salient to our discussion of Anton.  Also, to make this paper self-
contained, we briefly review the major components of the Anton 
architecture, which have been presented in more detail elsewhere 
[22, 23, 33]. 

2.1 Molecular Dynamics 
A molecular dynamics time step consists of a computationally 
intensive force calculation for each atom of a chemical system, 
followed by a less expensive integration step that advances the 
positions of the atoms according to classical laws of motion.  
Forces are calculated based on a model known as a force field.  
Commonly used biomolecular force fields express the total force 
on an atom as a sum of three components: 1) bonded forces, which 
involve interactions between small groups of atoms connected by 
one or more covalent bonds, 2) van der Waals forces, which in-
clude interactions between all pairs of atoms in the system, but 
which fall off quickly with distance and are typically only evalu-
ated for nearby pairs of atoms, and 3) electrostatic forces, which 
include interactions between all pairs of atoms and fall off slowly 
with distance.   
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 x86 core Anton 

 small cutoff (9 Å) large cutoff (13 Å) small cutoff (9 Å) large cutoff (13 Å) 
 fine mesh (643) coarse mesh (323) fine mesh (643) coarse mesh (323) 
Nonbonded forces     

Range-limited forces 56.6.ms (64%) 164.4.ms (89%) 1.4.µs (4%) 1.9.µs (12%) 
FFT & inverse FFT 12.3.ms (14%) 1.4.ms (1%) 24.7.µs (63%) 8.9.µs (58%) 
Mesh interpolation 9.6.ms (11%) 8.8.ms (5%) 9.5.µs (24%) 2.0.µs (13%) 
Correction forces 4.0.ms (5%) 3.8.ms (2%) 2.5.µs (6%) 2.5.µs (16%) 

Bonded forces 2.7.ms (3%) 2.7.ms (1%) 3.5.µs (9%) 4.1.µs (27%) 
Integration 3.4.ms (4%) 3.4.ms (2%) 1.6.µs (4%) 1.6.µs (10%) 
Total 88.5.ms (100%) 184.5.ms (100%) 39.2.µs (100%) 15.4.µs (100%) 

 
Table 2:  Effect of electrostatics parameters on performance, illustrated by execution time profiles for GROMACS on a single x86 core  (a 2.66-GHz Xeon 
X5550 [Nehalem] core) and for Anton, for one time step of the DHFR benchmark system (see Section 5.1).  By comparison with a conventional processor, 
Anton tends to achieve better performance when using a larger cutoff and a coarser mesh.  Shading represents tasks that Anton accelerates using special-
purpose pipelines.  The individual Anton task times, which were measured on one node of a 512-node machine, sum up to more than the total time per time 
step because certain tasks are performed in parallel.  Anton’s average execution time per time step is smaller than that shown here because long-range inter-
actions are typically evaluated only every two or three time steps.  Anton’s overall performance is discussed and compared to that of other parallel platforms 
in Section 5.1. 

Electrostatic forces are typically computed by one of several fast, 
approximate methods that account for long-range effects without 
requiring the explicit interaction of all pairs of atoms.  The most 
widely used methods for such fast electrostatics calculations 
employ the Ewald decomposition, which divides electrostatic inter-
actions into two contributions.  The first decays rapidly with 
distance, and is thus computed directly for all atom pairs separated 
by less than a cutoff.  This contribution and the van der Waals 
interactions together constitute the range-limited interactions.  The 
second contribution (long-range interactions) decays more slowly, 
but can be expressed as a convolution that can be efficiently  
computed by taking the fast Fourier transform (FFT) of the charge 
distribution on a regular mesh, multiplying by an appropriate func-
tion in Fourier space, and then performing an inverse FFT [7, 15].  
Charge must be mapped from atoms to nearby mesh points before 
the FFT computation (charge spreading), and forces on atoms must 
be calculated from the convolution result at nearby mesh points 
after the inverse FFT computation (force interpolation). 

2.2 Overview of the Anton Architecture 
Anton comprises a set of nodes connected in a toroidal topology; 
the 512-node machines discussed (along with certain smaller and 
larger configurations) in this paper, for example, have an 8×8×8 
toroidal topology, corresponding to an 8×8×8 partitioning of a 
chemical system with periodic boundary conditions.  Each node 
includes an ASIC with two major computational subsystems  
(Figure 2).  The first is the high-throughput interaction subsystem 
(HTIS) designed for computing massive numbers of range-limited 
pairwise interactions of various forms using an array of 32 hard-
wired pairwise point interaction pipelines (PPIPs).  The PPIPs can 
compute interactions with a number of different functional forms, 
as determined by various mode settings and user-specified lookup 
tables and parameter values.  The second is the flexible subsystem, 
which is composed of programmable cores used for the remaining, 
less structured part of the MD calculation.  The flexible subsystem 
contains eight geometry cores (GCs) that were designed in-house 
to perform fast numerical computations, four Tensilica LX proces-
sors that control the overall data flow in the Anton system, and four 
data transfer engines that allow communication to be hidden  

behind computation.  The Anton ASIC also contains a pair of  
DDR2-800 DRAM controllers, six high-speed (50.6 Gbit/s per 
direction) channels that provide communication to neighboring 
ASICs, and a host interface that communicates with an external 
host computer for input, output, and general control of the Anton 
system.  These units are connected by a bidirectional on-chip com-
munication ring.  The ASICs are implemented in 90-nm technology 
and clocked at 485 MHz, with the exception of the PPIP array in 
the HTIS, which is clocked at 970 MHz. 

3. CO-DESIGN OF ALGORITHMS AND 
HARDWARE 
The algorithms and numerical techniques employed by Anton were 
co-designed with its hardware architecture.  Some of these algo-
rithms were developed specifically for Anton, while others were 
adapted to exploit its specialized hardware.  This section describes 
these algorithms and their impact on Anton’s hardware design. 

3.1 Maximizing the Use of Specialized  
Hardware 
To accelerate a computation with specialized hardware, one typi-
cally begins by looking for an “inner loop” that accounts for the 
majority of the computational time.  Table 2 shows an execution 
time profile of the widely used GROMACS MD package [14] on 
an x86 core.  In a typical simulation, the x86 core spends 64% of 
its time computing range-limited forces—electrostatic and van der 
Waals interactions between pairs of atoms separated by less than 
9 Å.  These computations are mapped to Anton’s PPIPs, which 
accelerate the computations by over two orders of magnitude rela-
tive to a conventional processor core [23].  While the program-
mable cores of Anton’s flexible subsystem could accelerate the 
remaining 36% of the workload to a certain extent, algorithmic 
changes allow us to better leverage Anton’s specialized hardware. 

The second-largest contribution to the execution time on the x86 is 
the Fourier computation (14%); this includes both the forward and 
inverse FFTs.  The time required for Fourier computation scales 
with the number of mesh points used for the FFT, which is  
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determined by tunable parameters in the Ewald decomposition.  
This decomposition represents the electrostatic potential due to a 
point charge as a sum of two components: one that falls rapidly to 
zero as distance from the charge increases, and one that is smooth 
throughout space and can thus be computed on a mesh.  Increasing 
the smoothness of the second component allows the use of a coars-
er mesh, but also makes the first component fall to zero less rapidly 
so that an increased cutoff is required for the range-limited interac-
tions.  Because Anton has a much greater performance advantage 
over conventional processors for the range-limited interactions than 
for the Fourier computation, Anton’s performance is optimized by 
choosing a larger cutoff and a coarser mesh than are typically used 
on commodity hardware.  On the x86, this parameter change leads 
to an overall slowdown of nearly twofold, whereas on Anton, it 
results in a speedup of more than twofold (Table 2). 

Charge spreading and force interpolation are the next most compu-
tationally intensive tasks on the x86.  We observed that these mesh 
interpolation operations could be formulated as “interactions” be-
tween atoms and nearby mesh points.  In charge spreading, for 
example, the charge assigned to each mesh point can be written as 
a sum over the nearby atoms, with the contribution of each atom 
depending on the charge of that atom and its position relative to the 
mesh point.  This is similar to the range-limited computation per-
formed by the HTIS, with one complication: most high-
performance codes use the Smooth Particle Mesh Ewald (SPME) 
algorithm, in which the interaction between an atom and a mesh 
point is based on B-spline interpolation [7].  Anton’s PPIPs, on the 
other hand, compute interactions between two points as a table-
driven function of the distance between them—a radially symmet-
ric functional form that is incompatible with B-splines.  We  
addressed this problem by employing a method we developed 
called Gaussian Split Ewald (GSE) [31], which uses radially sym-
metric interaction functions—Gaussians—for charge spreading and 
force interpolation.  By using GSE instead of SPME or other mesh-
based Ewald methods (e.g., PPPM [15]), we were able to map 
charge spreading and force interpolation to the HTIS with minimal 
hardware modification.   

In most force fields, the electrostatic and van der Waals forces 
between pairs of atoms separated by one to three covalent bonds 
are eliminated or scaled down.  The long-range interactions include 
contributions from these pairs, which must be computed separately 
as correction forces and subtracted out.  The PPIP is suited for the 
computation of these forces, but the HTIS is not: it is designed for 
interactions between large sets of atoms rather than single-pair 
interactions.  We thus included the correction pipeline—a PPIP 
with the necessary control logic to process a list of atom pairs—in 
Anton’s flexible subsystem.   

Of the tasks listed in Table 2, only the Fourier computation, 
bonded force evaluation and integration are mapped to Anton’s 
flexible cores.  These tasks together constitute only 4% of the 
x86’s execution profile with typical Anton parameters; the  
remaining workload is mapped to Anton’s fast, specialized PPIPs.  
Through a combination of novel algorithms, parameter optimiza-
tion, and hardware optimization, we significantly reduced the  
computational workload mapped to Anton’s programmable cores. 

3.2 Choreographing the Flow of Data  
Anton’s performance depends on its ability to keep the many 
arithmetic units on each node busy with useful computation.  To 

achieve this, the various data flows within and between each ASIC 
must be carefully planned.  Here again, the optimal choice of algo-
rithms reflects important differences between Anton and general-
purpose hardware.  First, a conventional processor typically has a 
single logical memory that can be used to store or buffer all of the 
data on which the processor must operate.  By contrast, each com-
putational subunit on an Anton ASIC has its own low-latency 
dedicated memory.  Intra-node data transfers between these sub-
units are carefully choreographed to minimize data movement and 
to deliver data just when it is needed; this strategy requires algo-
rithmic choices that result in a predictable pattern of data move-
ment.  Second, in commodity clusters, inter-node communication 
latency is measured in microseconds, and per-message overheads 
disfavor techniques that use many small messages.  On  
Anton, inter-node latency is tens of nanoseconds, and messages 
with as little as four bytes of data can be sent efficiently, allowing 
the use of algorithms that require many short messages.  Indeed, a 
typical time step on Anton involves thousands of inter-node  
messages per ASIC.   

The remainder of this section describes inter- and intra-node paral-
lelization methods used by Anton for each of its major com-
putational tasks.  Most of Anton’s communication patterns take 
advantage of spatial locality: with the exception of the Fourier 
transforms and certain global reductions, all of the computations 
involve sets of particles separated by no more than around 15 Å.  
For this reason, Anton distributes particle data across nodes using a 
spatial decomposition, in which the space to be simulated is  
divided into a regular grid of boxes, and each node updates the 
positions and momenta of atoms in one box, referred to as the home 
box of that node and of those atoms (we also refer to the node  
containing an atom’s home box as the home node of that atom).  
Section 3.2.4 discusses minor modifications to this scheme that 
may cause atoms located near a box boundary to be assigned to a 
node responsible for a neighboring box. 

3.2.1 Range-Limited Interactions 
High-performance MD codes for conventional processors typically 
organize the computation of range-limited interactions by assem-
bling a pair list, which specifies pairs of atoms to be interacted on a 
processor.  On Anton, where the 32 PPIPs in each HTIS can sustain 
an aggregate input plus output data rate in excess of 10 Tbit/s, a 
pair list approach that transferred the inputs and outputs of each 
pipeline between the HTIS and other subsystems would require 
communication bandwidth beyond the limits of current technology.  
The HTIS instead uses a systolic-array-like architecture that con-
siders all possible interactions between two sets of atoms [23]. 

To map the range-limited interactions onto this architecture, Anton 
implements a variant of the NT method, a technique developed in 
2005 by Shaw [32] for parallelizing the range-limited N-body prob-
lem.  In this method, each node computes interactions between 
atoms in a tower region and atoms in a plate region (Figure 3a).  
Both of these regions contain the home box, as well as atoms im-
ported from other boxes.  Once the interactions have been com-
puted, the resulting forces on atoms in the tower and plate are sent 
back to the nodes on which those atoms reside.    

For typical chemical system sizes, the region from which each 
node imports atom positions and exports computed forces (the 
import region) is smaller for the NT method than for a traditional 
spatial decomposition method (Figure 3b); the NT method thus 
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Match efficiency of NT method 

Subboxes per box 
 

1×1×1 2×2×2 4×4×4 

8 Å 25% 40% 51% 

16 Å 12% 25% 40% 
Box 
side 

length 32 Å 4% 12% 25% 
 
Table 3: Match efficiency of the NT method for several box sizes, each 
divided into 1 (1×1×1), 8 (2×2×2), or 64 (4×4×4) subboxes.  These figures 
assume a 13-Å cutoff radius. 

 
 
Figure 3: (a–c) Import regions associated with several parallelization 
methods for range-limited pairwise interactions.  (a) In the NT method, 
each node computes interactions between atoms in a tower region and 
atoms in a plate region.  The asymmetry of the plate region reflects the fact 
that the interaction between a pair of particles need only be computed 
once, yielding equal and opposite forces on both particles.  (b) In a more 
traditional parallelization method, each node computes interactions be-
tween atoms in its home box and atoms in a larger “half-shell” region, 
which includes the home box.  (c) A variant of the NT method used for 
charge spreading and force interpolation.  A larger, symmetrical plate 
region is required because these calculations involve interactions between 
particles and mesh points rather than between pairs of particles.  (d–f) 
Adapting the NT method to Anton.  (d) The original NT method, for a 
chemical system larger than that of (a).  (e) The use of subboxes leads to 
an expansion of the plate region, because the union of the subbox plates is 
larger than the original plate.  (f) On Anton, the import region consists of 
whole subboxes. 

leads to a more communication-efficient implementation, an  
advantage that grows asymptotically as the level of parallelism 
increases.  In addition, because the two sets of atoms to be inter-
acted are closer in size in the NT method, the ratio of computation 
to communication bandwidth within each HTIS is higher, so the 
NT method uses on-chip communication resources more effec-
tively.  The NT method is one of a number of neutral territory 
methods—parallelization schemes in which the interaction between 
two atoms may be computed by a node on which neither resides [2, 
3, 11, 19, 29]. 

In the absence of appropriate countermeasures, one efficiency-
limiting factor associated with the NT method arises from the fact 
that not all atoms in the tower need to interact with all atoms in the 
plate; many atom pairs, for example, exceed the cutoff radius.  In 
order to achieve high PPIP utilization, each PPIP is thus fed by 
eight match units, which consider pairs of atoms and determine 
whether they may be required to interact.  A given plate atom can 
be tested against eight tower atoms in a single cycle, with pairs that 
pass this test moving through a concentrator that feeds the PPIP 
input queue.  As long as the average number of such pairs per cycle 
per PPIP is at least one, the PPIPs will approach full utilization.   

As the chemical system size increases, the NT method’s match 
efficiency (defined as the ratio of necessary interactions to pairs of 
atoms considered) falls to a point where even eight match units 
cannot keep a PPIP occupied (Table 3).  We address this issue by 

dividing each home box into a regular array of subboxes, and 
applying the NT method separately to each one.  The use of 
subboxes significantly increases match efficiency and thus PPIP 
utilization (Table 3), at the cost of slightly enlarging a node’s total 
import region (Figure 3e).  The effective import region is enlarged 
further (Figure 3f) to take advantage of Anton’s multicast mecha-
nism, which sends all atoms in a given subbox to the same set of 
nodes.  

A variant of the NT method is also used to parallelize the charge 
spreading and force interpolation operations, with the HTIS com-
puting interactions between atoms in the tower and mesh points in 
the plate.  Because of the asymmetric nature of these interactions, 
the plate region must be enlarged relative to that used for range-
limited interactions (Figure 3c).  In addition, mesh point positions 
are regular and fixed, so each node can simply compute them 
locally rather than importing them.  To perform charge spreading, 
for example, each node imports position data for atoms in the 
tower, computes interactions with mesh points in the plate, and 
then exports a charge for each of these mesh points.  Because the 
tower region that must be imported for the range-limited force 
computation always includes the charge-spreading tower region, no 
additional atom position communication is required.    

3.2.2 FFT 
In order to evaluate long-range electrostatic forces, Anton must 
perform two sequentially dependent FFTs: a forward FFT followed 
by an inverse FFT.  With our choice of Ewald parameters, the mesh 
on which these FFTs is computed is small—just 32×32×32 for a 
cubical chemical system 40–80 Å on a side, with only 64 mesh 
points stored on each of Anton’s 512 nodes.  As such, the actual 
FFT computation is relatively inexpensive, and most of the FFT 
time is due to communication.  Although Anton’s toroidal inter-
connect is optimized for local communication, the three-
dimensional FFT can still be parallelized effectively using a 
straightforward decomposition into sets of one-dimensional FFTs 
oriented along each of the three axes.  This parallelization strategy 
involves sending a large number of messages (hundreds per node); 
alternative strategies that reduce the number of messages but use 
greater communication volume generally perform better on com-
modity clusters [2, 14].  Computation of the FFT on Anton is de-
scribed in more detail in a separate paper [36]. 

3.2.3 Bond Terms and Correction Forces 
In contrast to range-limited forces, which are computed between 
pairs of atoms dynamically selected according to their current 
positions, each bonded force term (bond term) is specified prior to 
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the simulation as a small set of atoms along with parameters gov-
erning their interaction.  At every time step, the data representing 
each bond term must be brought together with the data representing 
the positions of its constituent atoms to compute both the bond 
term and associated correction forces.  On a conventional proces-
sor, this can be accomplished by ensuring that copies of the re-
quired atoms are available in memory on the node containing the 
bond term; the atoms can then be retrieved to evaluate the bond 
term.  For Anton this technique is impractical: the overhead of 
dynamically retrieving atoms from memory would significantly 
increase the overall computation time.  Instead, bond terms are 
statically assigned to GCs, so that each atom has a fixed set of 
“bond destinations.”  On every time step an atom’s position is sent 
directly to the flexible subsystems containing its bond destinations, 
whence it is replicated to the individual GCs as well as the correc-
tion pipeline.  In addition to eliminating unnecessary communica-
tion latency, this approach allows us to perform static load-
balancing among the GCs so that the worst-case load is minimized.  
To ensure that the bond destinations for each atom remain on nodes 
close to the atom’s home node as the chemical system evolves, we 
recompute the assignment of bond terms to GCs roughly every 
100,000 time steps. 

3.2.4 Integration and Constraints 
Most MD simulations can be accelerated by incorporating 
constraints during integration that fix the lengths of bonds to 
hydrogen atoms as well as angles between certain bonds.  This 
eliminates the fastest vibrational motions, allowing the simulation 
to take longer time steps.  Applying constraints requires operating 
on small groups of neighboring atoms (constraint groups) that may 
reside on different home boxes according to the spatial subdivision 
used for the NT method.  This poses a design challenge: on the one 
hand, we require the atoms to be on the same node during integra-
tion; on the other, we require them to be on different nodes in order 
to perform the NT method’s position import.  

We address this issue by slightly altering the assignment of atoms 
to nodes.  In particular, we ensure that all atoms in a constraint 
group reside on the same node; this node takes full responsibility 
for updating those atoms’ positions and velocities.  In order to en-
sure that all required range-limited interactions are computed de-
spite the fact that some atoms may not reside on the “correct” home 
node according to the spatial subdivision, we slightly expand the 
NT method’s import region, as if the cutoff radius were somewhat 
larger.  The match units and PPIPs still use the original cutoff  
radius to determine which pairs of atoms should interact, so the set 
of particle interactions performed remains exactly the same.  An 
alternative approach would involve replicating the computation 
associated with integration of each constraint group across every 
node that contains one of that group’s atoms, thus ensuring that all 
updated atom positions are available on their home nodes follow-
ing integration.  We implemented both alternatives for purposes of 
comparison, and found that the former approach afforded signifi-
cantly better performance due to both a reduced computational 
workload and much simpler (and faster) bookkeeping code, which 
more than offset the communication costs associated with the lar-
ger import region. 

We use a similar strategy to reduce the cost associated with  
migrating atoms between nodes as atoms move through space, 
crossing box boundaries.  Atom migration can significantly impact 

performance, as it requires a large number of sequential bookkeep-
ing operations that are on the critical path of the time step.  Anton  
mitigates this expense by performing migration operations only 
every N time steps, where N is typically between 4 and 8.  Thus, an 
atom can reside on an “incorrect” node for one or both of two rea-
sons: because it is part of a constraint group that straddles two or 
more nodes, or because of a delay of several time steps from when 
it crosses a box boundary to when the next migration operation is 
performed.  Because we can place a conservative upper bound on 
the distance a particle will move in a time step, a slight expansion 
of the NT method import region is again sufficient to ensure execu-
tion of the correct set of range-limited interactions. 

4. NUMERICAL REPRESENTATIONS AND 
COMPUTATION 
Anton achieves both a performance advantage and desirable nu-
merical properties by using customized numerical formats.  
Throughout the Anton ASIC, we use a fixed-point number system1, 
in which a B-bit, signed fixed-point number can represent 2B even-
ly spaced distinct real numbers in [–1, 1).  This fixed-point repre-
sentation takes advantage of the fact that all of the arithmetic in an 
MD simulation involves quantities that are bounded by physical 
considerations.  

The use of fixed-point arithmetic requires increased attention to the 
units in which different physical quantities are represented on  
Anton and the scaling factors used to convert between them, but it 
has two substantial advantages over floating point, which is the 
arithmetic of choice for modern commodity processors and nearly 
all MD codes.  First, fixed-point hardware adders have signifi-
cantly lower area and latency than their floating-point equivalents: 
a 32-bit fixed-point adder is about one-tenth the size and has one-
quarter the latency of a 32-bit (single-precision) floating-point 
adder.  Second, unlike floating-point addition, fixed-point addition 
is associative.  In other words, the order of summation of fixed-
point numbers will not affect numerical results2, which simplifies 
the algorithms necessary to achieve the following desirable  
numerical properties on Anton:  

Determinism.  Many popular MD codes are not deterministic;  
repeated simulations on the same hardware with the same inputs 
may produce different results, because, for example, the order in 
which the forces on an atom are summed depends on the order in 
which messages arrive at the node computing the sum.  Simulations 
on Anton are deterministic, as we have verified by repeating simu-
lations of over four billion time steps and checking that the results 
are bitwise identical.  

Parallel invariance.  To our knowledge, no commonly used MD 
code produces bitwise identical results regardless of the number of 
processors used in a simulation.  In contrast, a given simulation 
will evolve in exactly the same way on any single- or multi-node 
Anton configuration.  As part of the bringup process, we regularly 

                                                           
1 Single-precision floating-point arithmetic is available on the Tensilica 
cores, but is used for very limited purposes. 
2 Furthermore, on Anton, addition and subtraction are allowed to “wrap” in 
the natural way for twos-complement arithmetic.  Thus, a collection of 
values can be added correctly as long as the final sum is representable, 
regardless of whether intermediate partial sums wrap.  In 4-bit arithmetic, 
for example, 3/8, 7/8 and −5/8 can be summed and will correctly produce 
5/8 regardless of the order of operation, even though 3/8+7/8 wraps to −3/4. 
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Figure 5: Performance of a 512-node Anton machine for chemical 
systems of different sizes.  Simulation parameters are specified in 
Table 4 (water systems use the same parameters as similarly sized 
protein systems).  Performance was measured over ten million time 
steps for each system. 

 
Figure 4: Bit widths of principal data paths and arithmetic operators in the HTIS.  (a) One of 32 PPIPs on each ASIC, including an arbitrary function 
evaluator used to compute van der Waals interactions (a similar function evaluator for electrostatic interactions is not shown).  (b) One of 256 
low-precision distance check units (components of the match units).  (c) Three of 12 multiply/accumulators used in the computation of virials (the large bit 
widths allow Anton to guarantee determinism and parallel invariance for pressure-controlled simulations).  All rounding is performed using a round-to-
nearest/even rule. 

compared simulation results on one Anton machine to those com-
puted previously on a smaller machine, beginning with simulations 
performed on a single Anton node.  We verified, for example, that 
2.7 billion time steps produced identical results on 128-node and 
512-node Anton configurations. 

Exact reversibility.  Anton simulations are exactly reversible when 
run without constraints, temperature control or pressure control: we 
have run a simulation for 400 million time steps, negated the  
instantaneous velocities of all the atoms, and then run another 400 
million time steps, recovering the initial conditions bit-for-bit.  
Anton achieves exact time reversibility by representing the contin-
uum space of atomic positions and momenta with a uniformly 
dense discrete approximation [2, 34], and by eliminating variability 
associated with the order of force summation, both of which are 
natural consequences of fixed-point arithmetic. 

The HTIS is the most computationally dense part of the Anton 
ASIC.  Whereas the cores of the flexible subsystem perform most 
computation in 32-bit arithmetic, the bit width of each arithmetic 
unit within the HTIS was optimized to minimize die area while 
maintaining sufficient accuracy.  Figure 4 illustrates the variety of 
datapath widths used in Anton, including 8-bit low-precision 
distance checks and 86-bit accumulators for the tensor products of 
force and position (virials) used in pressure-controlled simulations. 

Each PPIP computes two arbitrary functions of a distance, r, to 
evaluate the electrostatic and van der Waals forces between two 
atoms.  To provide flexibility while conserving die area, these 
functions are implemented as tabulated piecewise-cubic polynomi-
als.  The tables are indexed by r2 rather than r, avoiding an unnec-
essary square root in the distance computation [2].  A tiered  

indexing scheme divides the domain of r2 into non-uniform seg-
ments, allowing for narrower segments where the function is rap-
idly varying.  In a system with a cutoff of R, for example, the elec-
trostatic table might be configured with 64 entries for (r/R)2 in [0, 
1/128), 96 entries for (r/R)2 in [1/128, 1/32), 56 entries for (r/R)2 in 
[1/32, 1/4) and 24 entries for (r/R)2 in [1/4, 1).  In each entry, the 
table stores the four coefficients of a cubic polynomial and a single 
exponent common to all four coefficients, as in block-floating-
point schemes.  Polynomial coefficients, associated exponents, and 
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Chemical system 
(PDB ID) 

Number  
of atoms 

Side  
length (Å) 

Cutoff 
radius (Å)

Mesh 
size 

Performance 
(µs/day) 

Energy drift 
(kcal/mol/DoF/µs) 

Total  
force error

Numerical 
force error 

gpW (1HYW) 9865 46.8 10.5 323 18.7 0.035 80.7×10−6 9.8×10−6 
DHFR (5DFR) 23558 62.2 13.0 323 16.4 0.053 73.9×10−6 9.0×10−6 
aSFP (1SFP) 48423 78.8 15.5 323 11.2 0.036 67.3×10−6 11.5×10−6 
NADHOx (1NOX) 78017 92.6 10.5 643 6.4 0.015 58.4×10−6 8.3×10−6 
FtsZ (1FSZ) 98236 99.8 11.0 643 5.8 0.015 62.0×10−6 8.9×10−6 
T7Lig (1A0I) 116650 105.6 11.0 643 5.5 0.021 60.6×10−6 8.9×10−6 

 
Table 4: Accuracy measurements for the protein-in-water systems of Figure 5, and the adjustable parameters used in each simulation.  Force errors are 
expressed as fractions of the rms force.  The first column lists the name of each protein and the Protein Data Bank ID of its crystal structure.  “DoF” stands 
for “degree of freedom.”  All simulations used 2.5-femtosecond time steps with long-range interactions evaluated at every other time step.  Bond lengths 
to hydrogen atoms were constrained.  The gpW and DHFR simulations used the AMBER99SB force field [17], while the others used OPLS-AA [18]; 
water was represented by the rigid TIP3P model. 

the parameters of the tiered indexing scheme are computed off-line 
as part of system preparation; the Remez exchange algorithm is 
used to compute the minimax polynomial on each segment, after 
which the coefficients are adjusted to make the function continuous 
across segment boundaries.  Together, these features allow the 
function evaluators to use relatively narrow (19–22 bit) data paths 
but still accurately capture functions with large dynamic range.  

5. RESULTS 
We have thus far constructed four 512-node Anton machines, each 
of which typically performs an independent simulation.  In this 
section, we present initial measurements of Anton’s execution 
speed, the magnitude of which is illustrated by simulations that 
have reached a timescale far beyond that of the longest previous 
MD simulations.  We also present the results of various tests  
performed to assess the accuracy of Anton simulations. 

5.1 Performance 
Figure 5 shows the performance of a 512-node Anton machine on 
several different chemical systems, varying in size and composi-
tion.  On the widely used Joint AMBER-CHARMM benchmark 
system, which contains 23,558 atoms and represents the protein 
dihydrofolate reductase (DHFR) surrounded by water, Anton simu-
lates 16.4 μs per day of wall-clock time.  The fastest previously 
reported simulation of this system was obtained using a software 
package, called Desmond, which was developed within our group 
for use on commodity clusters [2].  This Desmond simulation exe-
cuted at a rate of 471 nanoseconds (ns) per day on a 512-node  
2.66-GHz Intel Xeon E5430 cluster connected by a DDR  
InfiniBand network, using only two of the eight cores on each node 
in order to maximize network bandwidth per core [4].  (Using more 
nodes, or more cores per node, leads to a decrease in performance 
as a result of an increase in communication requirements.)  Due to 
considerations related to the efficient utilization of resources,  
however, neither Desmond nor other high-performance MD codes 
for commodity clusters are typically run at such a high level of 
parallelism, or in a configuration with most cores on each node 
idle.  In practice, the performance realized in such cluster-based 
simulations is generally limited to speeds on the order of  
100 ns/day.  The previously published simulations listed in Table 
1, for example, ran at 100 ns/day or less—over two orders of mag-
nitude short of the performance we have demonstrated on Anton. 

For chemical systems with more than 25,000 atoms, the simulation 
rate of a 512-node Anton scales inversely with the number of at-
oms simulated (Figure 5 and Table 4).  Below 25,000 atoms, the 
simulation rate gradually plateaus as the ratio of communication to 
computation increases.  Systems containing only water run 3–24% 
faster than systems of the same size containing a protein solvated 
in water, because the water molecules do not require bond terms 
(they are held rigid by constraints); this indicates that bond term 
computation is sometimes on the critical path and represents an 
area for performance optimization.  

Although the configuration used to generate most of the results 
presented in this paper contains 512 nodes, Anton machines may 
incorporate a number of nodes equal to any power of two from 1 to 
32,768 nodes.3  During the bringup process we tested configura-
tions with 1, 2, 4, 8, 64, 128 and 256 nodes.  We continue to use 
configurations with fewer than 512 nodes to simulate certain 
smaller chemical systems, for which such configurations may 
prove more cost-effective.  A 512-node Anton machine can be 
partitioned, for example, into four 128-node machines, each of 
which achieves 7.5 μs/day on the DHFR system—well over 25% of 
the performance achieved when parallelizing the same simulation 
across all 512 nodes.  Configurations with more than 512 nodes 
will deliver increased performance for larger chemical systems, but 
will likely not benefit chemical systems with only a few thousand 
atoms, for which the increase in communication latency will out-
weigh the increase in parallelism. 

5.2 Accuracy 
Anton’s determinism, parallel invariance, and reversibility proper-
ties (Section 4) provide powerful correctness tests, which we ex-
ploited throughout the bringup process.  In addition, we  
performed a variety of tests to ensure that Anton produces results 
comparable in accuracy to those of widely used MD codes running 
on commodity hardware. 

We examined errors in the per-atom forces computed on Anton by 
comparing them with forces computed in Desmond using double-
precision floating-point arithmetic and extremely conservative 
values for adjustable parameters (cutoffs, grid size, etc.).  Table 4 
lists the root-mean-squared (rms) total force errors, expressed as a 

                                                           
3 The number of nodes in an Anton machine need not actually be a power of 
two, but the current software only supports power-of-two configurations. 
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Figure 7: Unfolding and folding events in a 236-µs simulation of the 
protein gpW.  (a) is a folded structure early in the simulation, (b) is a 
snapshot after the protein has partially unfolded, and (c) is a snapshot after it 
has folded again. 

 
 
Figure 6: Amount of motion of each amino acid in the protein GB3, as 
estimated from 1-μs simulations on Anton (blue) and Desmond (red), and 
as measured experimentally by NMR (black).  Smaller values on the 
vertical axis indicate more motion.  Simulations used the AMBER99SB 
force field [17]. 

fraction of the rms force, for the protein systems of Figure 5.  In 
each case, the ratio is less than 10–4; ratios of 10–3 are generally 
considered acceptable for MD simulation [37].  The table also lists 
“numerical force error,” defined as the difference between Anton 
forces and forces computed in double-precision floating-point 
arithmetic using the same adjustable parameter values as Anton.  
This error is nearly an order of magnitude smaller than the total 
force error, indicating that the majority of the total force error is 
not inherent to Anton’s numerics, and could be reduced by adjust-
ing parameters at the cost of performance.  

Calculating forces with negligible error is necessary but not suffi-
cient for the execution of accurate MD simulations.  Even small 
errors can accumulate over time if they are correlated or biased.  
Energy drift, the rate of change of total system energy (which is 
exactly conserved by the underlying equations of motion), is more 
sensitive to certain errors that could adversely affect the physical 
predictions of a simulation.4  Table 4 lists energy drift figures 
measured on Anton, which are lower than those typically obtained 
with widely used single-precision and double-precision codes on 
commodity hardware [2, 14], although certain double-precision 
codes obtain significantly lower energy drift [9]. 

Higher-level tests of Anton have included the estimation of 
experimentally observable quantities through protein simulations.  
One example, shown in Figure 6, involves quantities called 
backbone amide order parameters, which are measured by nuclear 
magnetic resonance (NMR) experiments and which characterize 
the amount of movement of each amino acid in a protein (an order 
parameter near 1 indicates that the amino acid has little mobility, 
while a lower order parameter indicates that it has more).  Using a 
previously described method [24], we estimated these order pa-
rameters for 55 amino acids of the protein GB3 from a one-
microsecond Anton simulation and from a one-microsecond  

                                                           
4 Most simulations are run with a thermostat that removes the most immedi-
ate effects of energy drift, but energy drift in unthermostatted simulations 
(such as those reported in Table 4) provides a useful diagnostic for imple-
mentation accuracy. 

simulation on a cluster running Desmond, with the same force 
field.  The two estimates are highly similar; the differences reflect 
the fact that one finite-length trajectory will encounter certain rare 
events that the other will not, because the systems we simulate are 
chaotic and any two MD simulations that are not bitwise identical 
will follow divergent trajectories.  Figure 6 also shows the corre-
sponding order parameters measured by recent NMR experiments 
[13].  Again, the results are similar; differences reflect a combina-
tion of experimental measurement errors and errors in the estimates 
from simulation (resulting from finite simulation length and from 
limitations in the force field employed). 

5.3 Long-Timescale Simulations 
Although Anton is still the focus of a substantial software devel-
opment effort, it has already enabled the longest MD simulations to 
date by a very large factor.  Few previously reported simulations 
have reached 2 μs, the longest being a 10 μs simulation reported in 
2008 that took over three months on the NCSA Abe machine [10] 
(Table 1).  By contrast, we have already performed a 1031-μs 
simulation on Anton. 

This millisecond-scale simulation models a protein called bovine 
pancreatic trypsin inhibitor (BPTI) (Figure 1).  This protein has 
been the subject of many previous MD simulations; in fact, the first 
MD study of a protein, published in 1977 [26], simulated BPTI for 
9.2 picoseconds.  Our simulation, which is over 100 million times 
longer, reveals behavior that is not evident at timescales of pico-
seconds, nanoseconds, or even a few microseconds.  Certain as-
pects of this behavior were unanticipated, and have provided an 
explanation for experimental data on the dynamical properties of 
BPTI.  The biophysical observations and results from this simula-
tion will be detailed elsewhere. 

Anton’s performance is dependent on the size of the system being 
simulated, and on a number of parameters associated with the exe-
cution of molecular dynamics simulations.  Our simulation of BPTI 
involves a cubic system measuring 51.3 Å on a side and containing 
17,758 particles: 892 protein atoms and 6 chloride ions, each repre-
sented by a single particle using the AMBER99SB force field [17] 
with a correction to the parameters describing isoleucine [28]; and 
4215 water molecules, each represented by 4 particles using the 
TIP4P-Ew model [16] (each of the four particles in this water 
model is treated computationally as an atom, even though a water 
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molecule contains only three physical atoms).  We used a 10.4-Å 
cutoff radius for range-limited interactions, a 7.1-Å cutoff for 
charge spreading and force interpolation, a 32×32×32 FFT mesh, 
Berendsen temperature control, and 2.5-femtosecond time steps, 
with long-range electrostatics evaluated every other time step.  It 
proceeded at 9.8 μs/day, but more recent software and clock speed 
improvements have allowed a comparable simulation of this sys-
tem to proceed at 18.2 μs/day.  

We have also performed a variety of other simulations on Anton 
with durations of 10–236 μs, including several of protein folding.  
In the hope of observing both protein folding and protein unfolding 
events, for example, we simulated a viral protein called gpW for 
236 μs at a temperature that, experimentally, equally favors the 
folded and unfolded states.  We observed a sequence of folding and  
unfolding events, such as those illustrated by the snapshots in 
Figure 7. 

6. CONCLUSION 
Commodity computing benefits from economies of scale but 
imposes limitations on the extent to which an MD simulation can 
be accelerated through parallelization.  Due to a combination of a 
unique hardware architecture and carefully co-designed algorithms, 
Anton gives scientists, for the first time, the ability to perform MD 
simulations on the order of a millisecond—two orders of magni-
tude longer than any atomically detailed simulation reported on 
general-purpose hardware, and three orders of magnitude longer 
than any simulation reported previously on special-purpose hard-
ware  (a one-microsecond simulation using MDGRAPE-3 was 
reported in 2007 [35]). Anton’s actual measured performance ex-
ceeds our previously published, simulator-based predictions [33], 
both because we were able to operate the system at a higher clock 
rate than anticipated and because we discovered further opportuni-
ties for improvement in algorithms and software.  (We predicted a 
simulation rate of 14.5 μs/day for the DHFR benchmark system, for 
example, and achieved a simulation rate of 16.4 μs/day.)  

Although it has only been operational for a few months, Anton has 
already begun to serve as a “computational microscope,” allowing 
the observation of biomolecular processes that are inaccessible to 
laboratory experiments and that, until now, have been well beyond 
the reach of computer simulation.  Our hope is that, over the com-
ing years, Anton will contribute not only to the advancement of 
basic scientific knowledge but to the development of safe, effec-
tive, precisely targeted medicines capable of relieving suffering 
and saving human lives. 
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