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Abstract

We describe our work on improving the performance
of collective communication operations in MPICH for
clusters connected by switched networks. For each
collective operation, we use multiple algorithms de-
pending on the message size, with the goal of min-
imizing latency for short messages and minimizing
bandwidth use for long messages. Although we have
implemented new algorithms for all MPI collective op-
erations, because of limited space we describe only the
algorithms for allgather, broadcast, all-to-all, reduce-
scatter, reduce, and allreduce. Performance results
on a Myrinet-connected Linux cluster and an IBM SP
indicate that, in all cases, the new algorithms signifi-
cantly outperform the old algorithms used in MPICH
on the Myrinet cluster, and, in many cases, they out-
perform the algorithms used in IBM’s MPI on the
SP. We also explore in further detail the optimiza-
tion of two of the most commonly used collective op-
erations, allreduce and reduce, particularly for long
messages and non-power-of-two numbers of processes.
The optimized algorithms for these operations per-
form several times better than the native algorithms
on a Myrinet cluster, IBM SP, and Cray T3E. Our
results indicate that to achieve the best performance
for a collective communication operation, one needs
to use a number of different algorithms and select the
right algorithm for a particular message size and num-
ber of processes.

1 Introduction

Collective communication is an important and fre-
quently used component of MPI and offers im-
plementations considerable room for optimization.
MPICH [17], although widely used as an MPI imple-
mentation, has until recently had fairly rudimentary
implementations of the collective operations. This
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paper describes our efforts at improving the perfor-
mance of collective operations in MPICH. Our ini-
tial target architecture is one that is very popular
among our users, namely, clusters of machines con-
nected by a switch, such as Myrinet or the IBM SP
switch. Our approach has been to identify the best
algorithms known in the literature, improve on them
or develop new algorithms where necessary, and im-
plement them efficiently. For each collective opera-
tion, we use multiple algorithms based on message
size: The short-message algorithms aim to minimize
latency, and the long-message algorithms aim to min-
imize bandwidth use. We use experimentally deter-
mined cutoff points to switch between different algo-
rithms depending on the message size and number of
processes. We have implemented new algorithms in
MPICH (MPICH 1.2.6 and MPICH2 0.971) for all the
MPI collective operations, namely, scatter, gather, all-
gather, broadcast, all-to-all, reduce, allreduce, reduce-
scatter, scan, barrier, and their variants. Because of
limited space, however, we describe only the new al-
gorithms for allgather, broadcast, all-to-all, reduce-
scatter, reduce, and allreduce.

A five-year profiling study of applications running
in production mode on the Cray T3E 900 at the Uni-
versity of Stuttgart revealed that more than 40% of
the time spent in MPI functions was spent in the
two functions MPI Allreduce and MPI Reduce and
that 25% of all execution time was spent on program
runs that involved a non-power-of-two number of pro-
cesses [20]. We therefore investigated in further detail
how to optimize allreduce and reduce. We present a
detailed study of different ways of optimizing allre-
duce and reduce, particularly for long messages and
non-power-of-two numbers of processes, both of which
occur frequently according to the profiling study.

The rest of this paper is organized as follows. In
Section 2, we describe related work in the area of
collective communication. In Section 3, we describe
the cost model used to guide the selection of algo-
rithms. In Section 4, we describe the new algorithms
in MPICH and their performance. In Section 5, we
investigate in further detail the optimization of reduce
and allreduce. In Section 6, we conclude with a brief
discussion of future work.
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2 Related Work

Early work on collective communication focused on
developing optimized algorithms for particular archi-
tectures, such as hypercube, mesh, or fat tree, with
an emphasis on minimizing link contention, node
contention, or the distance between communicating
nodes [3, 5, 6, 23]. More recently, Vadhiyar et al.
have developed automatically tuned collective com-
munication algorithms [30]. They run experiments to
measure the performance of different algorithms for
a collective communication operation under different
conditions (message size, number of processes) and
then use the best algorithm for a given set of condi-
tions. Researchers in Holland and at Argonne have
optimized MPI collective communication for wide-
area distributed environments [14, 15]. In such en-
vironments, the goal is to minimize communication
over slow wide-area links at the expense of more com-
munication over faster local-area connections. Re-
searchers have also developed collective communica-
tion algorithms for clusters of SMPs [22, 25, 27, 28],
where communication within an SMP is done differ-
ently from communication across a cluster. Some ef-
forts have focused on using different algorithms for
different message sizes, such as the work by Van de
Geijn et al. [2, 8, 16, 24], by Rabenseifner on re-
duce and allreduce [19], and by Kale et al. on all-
to-all communication [13]. Benson et al. studied the
performance of the allgather operation in MPICH on
Myrinet and TCP networks and developed a dissem-
ination allgather based on the dissemination barrier
algorithm [4]. Bruck et al. proposed algorithms for all-
gather and all-to-all that are particularly efficient for
short messages [7]. Iannello developed efficient algo-
rithms for the reduce-scatter operation in the LogGP
model [12].

3 Cost Model

We use a simple model to estimate the cost of the
collective communication algorithms in terms of la-
tency and bandwidth use, and to guide the selection
of algorithms for a particular collective communica-
tion operation. This model is similar to the one used
by Van de Geijn [2, 16, 24], Hockney [11], and others.
Although more sophisticated models such as LogP [9]
and LogGP [1] exist, this model is sufficient for our
needs.

We assume that the time taken to send a message
between any two nodes can be modeled as α + nβ,
where α is the latency (or startup time) per message,
independent of message size, β is the transfer time per

byte, and n is the number of bytes transferred. We
assume further that the time taken is independent of
how many pairs of processes are communicating with
each other, independent of the distance between the
communicating nodes, and that the communication
links are bidirectional (that is, a message can be trans-
ferred in both directions on the link in the same time
as in one direction). The node’s network interface
is assumed to be single ported; that is, at most one
message can be sent and one message can be received
simultaneously. In the case of reduction operations,
we assume that γ is the computation cost per byte
for performing the reduction operation locally on any
process.

This cost model assumes that all processes can send
and receive one message at the same time, regard-
less of the source and destination. Although this is a
good approximation, many networks are faster if pairs
of processes exchange data with each other, rather
than if a process sends to and receives from differ-
ent processes [4]. Therefore, for the further optimiza-
tion of reduction operations (Section 5), we refine the
cost model by defining two costs: α + nβ is the time
taken for bidirectional communication between a pair
of processes, and αuni + nβuni is the time taken for
unidirectional communication from one process to an-
other. We also define the ratios fα = αuni/α and
fβ = βuni/β. These ratios are normally in the range
0.5 (simplex network) to 1.0 (full-duplex network).

4 Algorithms

In this section we describe the new algorithms and
their performance. We measured performance by us-
ing the SKaMPI benchmark [31] on two platforms:
a Linux cluster at Argonne connected with Myrinet
2000 and the IBM SP at the San Diego Super-
computer Center. On the Myrinet cluster we used
MPICH-GM and compared the performance of the
new algorithms with the old algorithms in MPICH-
GM. On the IBM SP, we used IBM’s MPI and com-
pared the performance of the new algorithms with the
algorithms used in IBM’s MPI. On both systems, we
ran one MPI process per node. We implemented the
new algorithms as functions on top of MPI point-to-
point operations, so that we could compare perfor-
mance simply by linking or not linking the new func-
tions.

4.1 Allgather

MPI Allgather is a gather operation in which the
data contributed by each process is gathered on
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Figure 1: Recursive doubling for allgather

all processes, instead of just the root process as
in MPI Gather. The old algorithm for allgather in
MPICH uses a ring method in which the data from
each process is sent around a virtual ring of processes.
In the first step, each process i sends its contribution
to process i + 1 and receives the contribution from
process i − 1 (with wrap-around). From the second
step onward each process i forwards to process i + 1
the data it received from process i − 1 in the previ-
ous step. If p is the number of processes, the entire
algorithm takes p − 1 steps. If n is the total amount
of data to be gathered on each process, then at ev-
ery step each process sends and receives n

p amount of
data. Therefore, the time taken by this algorithm is
given by Tring = (p − 1)α + p−1

p nβ. Note that the
bandwidth term cannot be reduced further because
each process must receive n

p data from p − 1 other
processes. The latency term, however, can be reduced
by using an algorithm that takes lg p steps. We con-
sider two such algorithms: recursive doubling and the
Bruck algorithm [7].

4.1.1 Recursive Doubling

Figure 1 illustrates how recursive doubling works. In
the first step, processes that are a distance 1 apart
exchange their data. In the second step, processes
that are a distance 2 apart exchange their own data
as well as the data they received in the previous step.
In the third step, processes that are a distance 4 apart
exchange their own data as well the data they received
in the previous two steps. In this way, for a power-of-
two number of processes, all processes get all the data
in lg p steps. The amount of data exchanged by each
process is n

p in the first step, 2n
p in the second step,

and so forth, up to 2lg p−1n
p in the last step. Therefore,

the total time taken by this algorithm is Trec dbl =
lg p α + p−1

p nβ.
Recursive doubling works very well for a power-of-

two number of processes but is tricky to get right for a
non-power-of-two number of processes. We have im-
plemented the non-power-of-two case as follows. At
each step of recursive doubling, if any set of exchang-
ing processes is not a power of two, we do additional
communication in the peer (power-of-two) set in a log-

arithmic fashion to ensure that all processes get the
data they would have gotten had the number of pro-
cesses been a power of two. This extra communication
is necessary for the subsequent steps of recursive dou-
bling to work correctly. The total number of steps for
the non-power-of-two case is bounded by 2blg pc.

4.1.2 Bruck Algorithm

The Bruck algorithm for allgather [7] (referred to as
concatenation) is a variant of the dissemination algo-
rithm for barrier, described in [10]. Both algorithms
take dlg pe steps in all cases, even for non-power-of-two
numbers of processes. In the dissemination algorithm
for barrier, in each step k (0 ≤ k < dlg pe), process
i sends a (zero-byte) message to process (i + 2k) and
receives a (zero-byte) message from process (i − 2k)
(with wrap-around). If the same order were used to
perform an allgather, it would require communicat-
ing noncontiguous data in each step in order to get
the right data to the right process (see [4] for details).
The Bruck algorithm avoids this problem nicely by a
simple modification to the dissemination algorithm in
which, in each step k, process i sends data to pro-
cess (i − 2k) and receives data from process (i + 2k),
instead of the other way around. The result is that
all communication is contiguous, except that at the
end, the blocks in the output buffer must be shifted
locally to place them in the right order, which is a
local memory-copy operation.

Figure 2 illustrates the Bruck algorithm for an ex-
ample with six processes. The algorithm begins by
copying the input data on each process to the top of
the output buffer. In each step k, process i sends to
the destination (i− 2k) all the data it has so far and
stores the data it receives (from rank (i + 2k)) at the
end of the data it currently has. This procedure con-
tinues for blg pc steps. If the number of processes is
not a power of two, an additional step is needed in
which each process sends the first (p − 2blg pc) blocks
from the top of its output buffer to the destination
and appends the data it receives to the data it al-
ready has. Each process now has all the data it needs,
but the data is not in the right order in the output
buffer: The data on process i is shifted “up” by i
blocks. Therefore, a simple local shift of the blocks
downwards by i blocks brings the data into the de-
sired order. The total time taken by this algorithm is
Tbruck = dlg pe α + p−1

p nβ.

4.1.3 Performance

The Bruck algorithm has lower latency than recursive
doubling for non-power-of-two numbers of processes.
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Figure 2: Bruck allgather

For power-of-two numbers of processes, however, the
Bruck algorithm requires local memory permutation
at the end, whereas recursive doubling does not. In
practice, we find that the Bruck algorithm is best
for short messages and non-power-of-two numbers of
processes; recursive doubling is best for power-of-two
numbers of processes and short or medium-sized mes-
sages; and the ring algorithm is best for long messages
and any number of processes and also for medium-
sized messages and non-power-of-two numbers of pro-
cesses.

Figure 3 shows the advantage of the Bruck al-
gorithm over recursive doubling for short messages
and non-power-of-two numbers of processes because it
takes fewer steps. For power-of-two numbers of pro-
cesses, however, recursive doubling performs better
because of the pairwise nature of its communication
pattern and because it does not need any memory per-
mutation. As the message size increases, the Bruck
algorithm suffers because of the memory copies. In
MPICH, therefore, we use the Bruck algorithm for
short messages (< 80 KB total data gathered) and
non-power-of-two numbers of processes, and recur-
sive doubling for power-of-two numbers of processes
and short or medium-sized messages (< 512 KB total
data gathered). For short messages, the new allgather
performs significantly better than the old allgather in
MPICH, as shown in Figure 4.

For long messages, the ring algorithm performs bet-
ter than recursive doubling (see Figure 5). We believe
this is because it uses a nearest-neighbor communica-
tion pattern, whereas in recursive doubling, processes
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Figure 3: Performance of recursive doubling versus
Bruck allgather for power-of-two and non-power-of-
two numbers of processes (message size 16 bytes per
process).

that are much farther apart communicate. To con-
firm this hypothesis, we used the b eff MPI bench-
mark [18], which measures the performance of about
48 different communication patterns, and found that,
for long messages on both the Myrinet cluster and the
IBM SP, some communication patterns (particularly
nearest neighbor) achieve more than twice the band-
width of other communication patterns. In MPICH,
therefore, for long messages (≥ 512 KB total data
gathered) and any number of processes and also for
medium-sized messages (≥ 80 KB and < 512 KB to-
tal data gathered) and non-power-of-two numbers of
processes, we use the ring algorithm.
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4.2 Broadcast

The old algorithm for broadcast in MPICH is the com-
monly used binomial tree algorithm. In the first step,
the root sends data to process (root + p

2 ). This pro-
cess and the root then act as new roots within their
own subtrees and recursively continue this algorithm.
This communication takes a total of dlg pe steps. The
amount of data communicated by a process at any
step is n. Therefore, the time taken by this algorithm
is Ttree = dlg pe(α + nβ).

This algorithm is good for short messages because
it has a logarithmic latency term. For long mes-
sages, however, a better algorithm has been proposed
by Van de Geijn et al. that has a lower bandwidth
term [2, 24]. In this algorithm, the message to be
broadcast is first divided up and scattered among the
processes, similar to an MPI Scatter. The scattered
data is then collected back to all processes, similar to
an MPI Allgather. The time taken by this algorithm
is the sum of the times taken by the scatter, which is
(lg p α + p−1

p nβ) for a binomial tree algorithm, and
the allgather for which we use either recursive dou-
bling or the ring algorithm depending on the message
size. Therefore, for very long messages where we use
the ring allgather, the time taken by the broadcast is
Tvandegeijn = (lg p + p− 1)α + 2p−1

p nβ.
Comparing this time with that for the binomial tree

algorithm, we see that for long messages (where the
latency term can be ignored) and when lg p > 2 (or
p > 4), the Van de Geijn algorithm is better than
binomial tree. The maximum improvement in per-
formance that can be expected is (lg p)/2. In other
words, the larger the number of processes, the greater
the expected improvement in performance. Figure 6
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Figure 5: Ring algorithm versus recursive doubling
for long-message allgather (64 nodes). The size on
the x-axis is the total amount of data gathered on
each process.

shows the performance for long messages of the new
algorithm versus the old binomial tree algorithm in
MPICH as well as the algorithm used by IBM’s MPI
on the SP. In both cases, the new algorithm performs
significantly better. In MPICH, therefore, we use the
binomial tree algorithm for short messages (< 12 KB)
or when the number of processes is less than 8, and
the Van de Geijn algorithm otherwise (long messages
and number of processes ≥ 8).

4.3 All-to-All

All-to-all communication is a collective operation in
which each process has unique data to be sent to ev-
ery other process. The old algorithm for all-to-all in
MPICH does not attempt to schedule communication.
Instead, each process posts all the MPI Irecvs in a
loop, then all the MPI Isends in a loop, followed by
an MPI Waitall. Instead of using the loop index i
as the source or destination process for the irecv or
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Figure 6: Performance of long-message broadcast (64
nodes)

isend, each process calculates the source or destina-
tion as (rank + i) % p, which results in a scattering of
the sources and destinations among the processes. If
the loop index were directly used as the source or tar-
get rank, all processes would try to communicate with
rank 0 first, then with rank 1, and so on, resulting in
a bottleneck.

The new all-to-all in MPICH uses four different al-
gorithms depending on the message size. For short
messages (≤ 256 bytes per message), we use the index
algorithm by Bruck et al. [7]. It is a store-and-forward
algorithm that takes dlg pe steps at the expense of
some extra data communication (n

2 lg p β instead of
nβ, where n is the total amount of data to be sent
or received by any process). Therefore, it is a good
algorithm for very short messages where latency is an
issue.

Figure 7 illustrates the Bruck algorithm for an ex-
ample with six processes. The algorithm begins by do-
ing a local copy and “upward” shift of the data blocks
from the input buffer to the output buffer such that
the data block to be sent by each process to itself is at

the top of the output buffer. To achieve this, process
i must rotate its data up by i blocks. In each com-
munication step k (0 ≤ k < dlg pe), process i sends to
rank (i+2k) (with wrap-around) all those data blocks
whose kth bit is 1, receives data from rank (i − 2k),
and stores the incoming data into blocks whose kth
bit is 1 (that is, overwriting the data that was just
sent). In other words, in step 0, all the data blocks
whose least significant bit is 1 are sent and received
(blocks 1, 3, and 5 in our example). In step 1, all
the data blocks whose second bit is 1 are sent and re-
ceived, namely, blocks 2 and 3. After a total of dlg pe
steps, all the data gets routed to the right destination
process, but the data blocks are not in the right order
in the output buffer. A final step in which each pro-
cess does a local inverse shift of the blocks (memory
copies) places the data in the right order.

The beauty of the Bruck algorithm is that it is
a logarithmic algorithm for short-message all-to-all
that does not need any extra bookkeeping or control
information for routing the right data to the right
process—that is taken care of by the mathematics of
the algorithm. It does need a memory permutation in
the beginning and another at the end, but for short
messages, where communication latency dominates,
the performance penalty of memory copying is small.

If n is the total amount of data a process needs to
send to or receive from all other processes, the time
taken by the Bruck algorithm can be calculated as
follows. If the number of processes is a power of two,
each process sends and receives n

2 amount of data in
each step, for a total of lg p steps. Therefore, the time
taken by the algorithm is Tbruck = lg p α + n

2 lg p β.
If the number of processes is not a power of two, in
the final step, each process must communicate n

p (p−
2blg pc) data. Therefore, the time taken in the non-
power-of-two case is Tbruck = dlg peα+(n

2 lg p+ n
p (p−

2blg pc)) β.
Figure 8 shows the performance of the Bruck al-

gorithm versus the old algorithm in MPICH (isend-
irecv) for short messages. The Bruck algorithm per-
forms significantly better because of its logarithmic
latency term. As the message size is increased, how-
ever, latency becomes less of an issue, and the ex-
tra bandwidth cost of the Bruck algorithm begins to
show. Beyond a per process message size of about
256 bytes, the isend-irecv algorithm performs better.
Therefore, for medium-sized messages (256 bytes to
32 KB per message), we use the irecv-isend algorithm,
which works well in this range.

For long messages and power-of-two number of pro-
cesses, we use a pairwise-exchange algorithm, which
takes p − 1 steps. In each step k, 1 ≤ k < p, each
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process calculates its target process as (rank ̂ k)
(exclusive-or operation) and exchanges data directly
with that process. This algorithm, however, does not
work if the number of processes is not a power of
two. For the non-power-of-two case, we use an al-
gorithm in which, in step k, each process receives
data from rank − k and sends data to rank + k.
In both these algorithms, data is directly communi-
cated from source to destination, with no intermediate
steps. The time taken by these algorithms is given by
Tlong = (p− 1)α + nβ.

4.4 Reduce-Scatter

Reduce-scatter is a variant of reduce in which the
result, instead of being stored at the root, is scat-
tered among all processes. It is an irregular primi-
tive: The scatter in it is a scatterv. The old algo-
rithm in MPICH implements reduce-scatter by do-
ing a binomial tree reduce to rank 0 followed by a
linear scatterv. This algorithm takes lg p + p − 1
steps, and the bandwidth term is (lg p + p−1

p )nβ.
Therefore, the time taken by this algorithm is Told =
(lg p + p− 1)α + (lg p + p−1

p )nβ + n lg p γ.
In our new implementation of reduce-scatter, for

short messages, we use different algorithms depending
on whether the reduction operation is commutative or
noncommutative. The commutative case occurs most
commonly because all the predefined reduction oper-
ations in MPI (such as MPI SUM, MPI MAX) are com-
mutative.

For commutative operations, we use a recursive-
halving algorithm, which is analogous to the recursive-
doubling algorithm used for allgather (see Figure 9).
In the first step, each process exchanges data with a
process that is a distance p

2 away: Each process sends
the data needed by all processes in the other half, re-
ceives the data needed by all processes in its own half,
and performs the reduction operation on the received
data. The reduction can be done because the oper-
ation is commutative. In the second step, each pro-
cess exchanges data with a process that is a distance
p
4 away. This procedure continues recursively, halving
the data communicated at each step, for a total of lg p

7
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Figure 9: Recursive halving for commutative reduce-
scatter

steps. Therefore, if p is a power of two, the time taken
by this algorithm is Trec half = lg pα+ p−1

p nβ+ p−1
p nγ.

We use this algorithm for messages up to 512 KB.
If p is not a power of two, we first reduce the num-

ber of processes to the nearest lower power of two
by having the first few even-numbered processes send
their data to the neighboring odd-numbered process
(rank + 1). These odd-numbered processes do a re-
duce on the received data, compute the result for
themselves and their left neighbor during the recur-
sive halving algorithm, and, at the end, send the re-
sult back to the left neighbor. Therefore, if p is not
a power of two, the time taken by the algorithm is
Trec half = (blg pc + 2)α + 2nβ + n(1 + p−1

p )γ. This
cost is approximate because some imbalance exists in
the amount of work each process does, since some pro-
cesses do the work of their neighbors as well.

If the reduction operation is not commutative, re-
cursive halving will not work (unless the data is per-
muted suitably [29]). Instead, we use a recursive-
doubling algorithm similar to the one in allgather. In
the first step, pairs of neighboring processes exchange
data; in the second step, pairs of processes at distance
2 apart exchange data; in the third step, processes at
distance 4 apart exchange data; and so forth. How-
ever, more data is communicated than in allgather. In
step 1, processes exchange all the data except the data
needed for their own result (n−n

p ); in step 2, processes
exchange all data except the data needed by them-
selves and by the processes they communicated with
in the previous step (n− 2n

p ); in step 3, it is (n− 4n
p );

and so forth. Therefore, the time taken by this algo-
rithm is Tshort = lg pα+n(lg p− p−1

p )β+n(lg p− p−1
p )γ.

We use this algorithm for very short messages (< 512
bytes).

For long messages (≥ 512 KB in the case of com-
mutative operations and ≥ 512 bytes in the case of
noncommutative operations), we use a pairwise ex-
change algorithm that takes p−1 steps. In step i, each
process sends data to (rank + i), receives data from
(rank−i), and performs the local reduction. The data
exchanged is only the data needed for the scattered
result on the process (n

p ). The time taken by this algo-
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Figure 10: Performance of reduce-scatter for short
messages on the IBM SP (64 nodes) and for long mes-
sages on the Myrinet cluster (32 nodes)

rithm is Tlong = (p−1)α+ p−1
p nβ+ p−1

p nγ. Note that
this algorithm has the same bandwidth requirement as
the recursive halving algorithm. Nonetheless, we use
this algorithm for long messages because it performs
much better than recursive halving (similar to the re-
sults for recursive doubling versus ring algorithm for
long-message allgather).

The SKaMPI benchmark, by default, uses a non-
commutative user-defined reduction operation. Since
commutative operations are more commonly used, we
modified the benchmark to use a commutative oper-
ation, namely, MPI SUM. Figure 10 shows the perfor-
mance of the new algorithm for short messages on the
IBM SP and on the Myrinet cluster. The performance
is significantly better than that of the algorithm used
in IBM’s MPI on the SP and several times better than
the old algorithm (reduce + scatterv) used in MPICH
on the Myrinet cluster.

The above algorithms will also work for irregular
reduce-scatter operations, but they are not specifically
optimized for that case.
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4.5 Reduce and Allreduce

MPI Reduce performs a global reduction operation
and returns the result to the specified root, whereas
MPI Allreduce returns the result on all processes.
The old algorithm for reduce in MPICH uses a bi-
nomial tree, which takes lg p steps, and the data com-
municated at each step is n. Therefore, the time taken
by this algorithm is Ttree = dlg pe(α + nβ + nγ). The
old algorithm for allreduce simply does a reduce to
rank 0 followed by a broadcast.

The binomial tree algorithm for reduce is a good
algorithm for short messages because of the lg p num-
ber of steps. For long messages, however, a better
algorithm exists, proposed by Rabenseifner [19]. The
principle behind Rabenseifner’s algorithm is similar to
that behind Van de Geijn’s algorithm for long-message
broadcast. Van de Geijn implements the broadcast as
a scatter followed by an allgather, which reduces the
n lg pβ bandwidth term in the binomial tree algorithm
to a 2nβ term. Rabenseifner’s algorithm implements
a long-message reduce effectively as a reduce-scatter
followed by a gather to the root, which has the same
effect of reducing the bandwidth term from n lg p β
to 2nβ. The time taken by Rabenseifner’s algorithm
is the sum of the times taken by reduce-scatter (re-
cursive halving) and gather (binomial tree), which is
Trabenseifner = 2 lg p α + 2p−1

p nβ + p−1
p nγ.

For reduce, in the case of predefined reduction oper-
ations, we use Rabenseifner’s algorithm for long mes-
sages (> 2 KB) and the binomial tree algorithm for
short messages (≤ 2 KB). In the case of user-defined
reduction operations, we use the binomial tree algo-
rithm for all message sizes because, unlike with prede-
fined reduction operations, the user may pass derived
datatypes, and breaking up derived datatypes to do
the reduce-scatter is tricky. Figure 11 shows the per-
formance of reduce for long messages on the Myrinet
cluster. The new algorithm is more than twice as fast
as the old algorithm in some cases.

For allreduce, we use a recursive doubling algorithm
for short messages and for long messages with user-
defined reduction operations. This algorithm is sim-
ilar to the recursive doubling algorithm used in all-
gather, except that each communication step also in-
volves a local reduction. The time taken by this algo-
rithm is Trec−dbl = lg p α + n lg p β + n lg p γ.

For long messages and predefined reduction op-
erations, we use Rabenseifner’s algorithm for allre-
duce [19], which does a reduce-scatter followed by an
allgather. If the number of processes is a power of
two, the cost for the reduce-scatter is lg pα+ p−1

p nβ+
p−1

p nγ. The cost for the allgather is lg p α + p−1
p nβ.
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Figure 11: Performance of reduce (64 nodes)

Therefore, the total cost is Trabenseifner = 2 lg p α +
2p−1

p nβ + p−1
p nγ.

5 Further Optimization of
Allreduce and Reduce

As the profiling study in [20] indicated that allreduce
and reduce are the most commonly used collective op-
erations, we investigated in further detail how to op-
timize these operations. We consider five different al-
gorithms for implementing allreduce and reduce. The
first two algorithms are binomial tree and recursive
doubling, which were explained above. Binomial tree
for reduce is well known. For allreduce, it involves
doing a binomial-tree reduce to rank 0 followed by a
binomial-tree broadcast. Recursive doubling is used
for allreduce only. The other three algorithms are re-
cursive halving and doubling, binary blocks, and ring.
For explaining these algorithms, we define the follow-
ing terms:
• Recursive vector halving: The vector to be reduced

is recursively halved in each step.
• Recursive vector doubling: Small pieces of the vector

scattered across processes are recursively gathered
or combined to form the large vector

• Recursive distance halving: The distance over which
processes communicate is recursively halved at each
step (p

2 , p
4 , . . . , 1).

• Recursive distance doubling: The distance over
which processes communicate is recursively doubled
at each step (1, 2, 4, . . . , p

2 ).
All algorithms in this section can be implemented

without local copying of data, except if user-defined
noncommutative operations are used.
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5.1 Vector Halving and Distance Dou-
bling Algorithm

This algorithm is a combination of a reduce-scatter
implemented with recursive vector halving and dis-
tance doubling, followed either by a binomial-tree
gather (for reduce) or by an allgather implemented
with recursive vector doubling and distance halving
(for allreduce).

Since these recursive algorithms require a power-of-
two number of processes, if the number of processes
is not a power of two, we first reduce it to the nearest
lower power of two (p′ = 2blg pc) by removing r = p−p′

extra processes as follows. In the first 2r processes
(ranks 0 to 2r − 1), all the even ranks send the sec-
ond half of the input vector to their right neighbor
(rank+1), and all the odd ranks send the first half of
the input vector to their left neighbor (rank − 1), as
illustrated in Figure 12. The even ranks compute the
reduction on the first half of the vector and the odd
ranks compute the reduction on the second half. The
odd ranks then send the result to their left neigh-
bors (the even ranks). As a result, the even ranks
among the first 2r processes now contain the reduc-
tion with the input vector on their right neighbors
(the odd ranks). These odd ranks do not participate
in the rest of the algorithm, which leaves behind a
power-of-two number of processes. The first r even-
ranked processes and the last p−2r processes are now
renumbered from 0 to p′− 1, p′ being a power of two.

Figure 12 illustrates the algorithm for an example
on 13 processes. The input vectors and all reduction
results are divided into 8 parts (A, B,. . .,H), where 8
is the largest power of two less than 13, and denoted
as A–Hranks. After the first reduction, process P0 has
computed A–D0−1, which is the reduction result of the
first half (A–D) of the input vector from processes 0
and 1. Similarly, P1 has computed E–H0−1, P2 has
computed A–D2−3, and so forth. The odd ranks then
send their half to the even ranks on their left: P1 sends
E–H0−1 to P0, P3 sends E–H2−3 to P0, and so forth.
This completes the first step, which takes (1+ fα)α+
n
2 (1+fβ)β + n

2 γ time. P1, P3, P5, P7, and P9 do not
participate in the remainder of the algorithm, and the
remaining processes are renumbered from 0–7.

The remaining processes now perform a reduce-
scatter by using recursive vector halving and distance
doubling. The even-ranked processes send the sec-
ond half of their buffer to rank′ + 1 and the odd-
ranked processes send the first half of their buffer to
rank′ − 1. All processes then compute the reduction
between the local buffer and the received buffer. In
the next lg p′ − 1 steps, the buffers are recursively

halved, and the distance is doubled. At the end, each
of the p′ processes has 1

p′ of the total reduction result.

All these recursive steps take lg p′α+(p′−1
p′ )(nβ +nγ)

time. The next part of the algorithm is either an all-
gather or gather depending on whether the operation
to be implemented is an allreduce or reduce.
Allreduce: To implement allreduce, we do an all-
gather using recursive vector doubling and distance
halving. In the first step, process pairs exchange 1

p′

of the buffer to achieve 2
p′ of the result vector, in the

next step 2
p′ of the buffer is exchanged to get 4

p′ of the
result, and so forth. After lg p′ steps, the p′ processes
receive the total reduction result. This allgather part
costs lg p′ α + (p′−1

p′ )nβ. If the number of processes is
not a power of two, the total result vector must be sent
to the r processes that were removed in the first step,
which results in additional overhead of αuni + nβuni.
The total allreduce operation therefore takes the fol-
lowing time:
• If p is a power of two: Tall,h&d,p=2exp = 2 lg p α +

2nβ + nγ − 1
p (2nβ + nγ) ' 2 lg p α + 2nβ + nγ

• If p is not a power of two: Tall,h&d,p 6=2exp = (2 lg p′+
1 + 2fα)α + (2 + 1+3fβ

2 )nβ + 3
2nγ − 1

p′ (2nβ + nγ)
' (3 + 2blg pc)α + 4nβ + 3

2nγ

This algorithm is good for long vectors and power-
of-two numbers of processes. For non-power-of-two
numbers of processes, the data transfer overhead is
doubled, and the computation overhead is increased
by 3

2 . The binary blocks algorithm described in Sec-
tion 5.2 can reduce this overhead in many cases.
Reduce: For reduce, a binomial tree gather is per-
formed by using recursive vector doubling and dis-
tance halving, which takes lg p′αuni+ p′−1

p′ nβuni time.
In the non-power-of-two case, if the root happens to
be one of those odd-ranked processes that would nor-
mally be removed in the first step, then the role of
this process and its partner in the first step are inter-
changed after the first reduction in the reduce-scatter
phase, which causes no additional overhead. The total
reduce operation therefore takes the following time:
• If p is a power of two: Tred,h&d,p=2exp = lg p(1 +

fα)α + (1 + fβ)nβ + nγ − 1
p ((1 + fβ)nβ + nγ) '

2 lg p α + 2nβ + nγ
• If p is a not a power of two: Tred,h&d,p6=2exp =

lg p′(1+fα)α+(1+fα)α+(1+ 1+fbeta

2 +fβ)nβ+ 3
2nγ−

1
p′ ((1+ fβ)nβ +nγ) ' (2+2blg pc)α+3nβ + 3

2nγ

5.2 Binary Blocks Algorithm

This algorithm reduces some of the load imbalance
in the recursive halving and doubling algorithm when
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the number of processes is not a power of two. The
algorithm starts with a binary-block decomposition
of all processes in blocks with power-of-two numbers
of processes (see the example in Figure 13). Each
block executes its own reduce-scatter with the recur-
sive vector halving and distance doubling algorithm
described above. Then, starting with the smallest
block, the intermediate result (or the input vector in
the case of a 20 block) is split into the segments of
the intermediate result in the next higher block and
sent to the processes in that block, and those pro-
cesses compute the reduction on the segment. This
does cause a load imbalance in computation and com-
munication compared with the execution in the larger
blocks. For example, in the third exchange step in
the 23 block, each process sends one segment, re-
ceives one segment, and computes the reduction of
one segment (P0 sends B, receives A, and computes
the reduction on A). The load imbalance is introduced
by the smaller blocks 22 and 20 : In the 22 block,
each process receives and reduces two segments (for
example, A–B on P8), whereas in the 20 block (P12),
each process has to send as many messages as the ra-
tio of the two block sizes (here 22/20). At the end of
the first part, the highest block must be recombined
with the next smaller block, and the ratio of the block
sizes again determines the overhead.

We see that the maximum difference between the
ratio of two successive blocks, especially in the low
range of exponents, determines the load imbalance.
Let us define δexpo,max as the maximal difference of
two consecutive exponents in the binary represen-
tation of the number of processes. For example,
100 = 26 + 25 + 22, δexpo,max = max(6− 5, 5− 2) = 3.
If δexpo,max is small, the binary blocks algorithm can
perform well.

Allreduce: For allreduce, the second part is an all-
gather implemented with recursive vector doubling
and distance halving in each block. For this purpose,
data must be provided to the processes in the smaller
blocks with a pair of messages from processes of the
next larger block, as shown in Figure 13.

Reduce: For reduce, if the root is outside the largest
block, then the intermediate result segment of rank 0
is sent to the root, and the root plays the role of
rank 0. A binomial tree is used to gather the result
segments to the root process.

We note that if the number of processes is a power
of two, the binary blocks algorithm is identical to the
recursive halving and doubling algorithm.

5.3 Ring Algorithm

This algorithm uses a pairwise-exchange algorithm for
the reduce-scatter phase (see Section 4.4). For allre-
duce, it uses a ring algorithm to do the allgather, and,
for reduce, all processes directly send their result seg-
ment to the root. This algorithm is good in bandwidth
use when the number of processes is not a power of
two, but the latency scales with the number of pro-
cesses. Therefore this algorithm should be used only
for small or medium number of processes or for large
vectors. The time taken is Tall,ring = 2(p − 1)α +
2nβ + nγ− 1

p (2nβ + nγ) for allreduce and Tred,ring =
(p−1)(α+αuni)+n(β+βuni)+nγ− 1

p (n(β+βuni)+nγ)
for reduce.

5.4 Choosing the Fastest Algorithm

Based on the number of processes and the buffer size,
the reduction routine must decide which algorithm
to use. This decision is not easy and depends on
a number of factors. We experimentally determined
which algorithm works best for different buffer sizes
and number of processes on the Cray T3E 900. The
results for allreduce are shown in Figure 14. The fig-
ure indicates which is the fastest allreduce algorithm
for each parameter pair (number of processes, buffer
size) and for the operation MPI SUM with datatype
MPI DOUBLE. For buffer sizes less than or equal to
32 bytes, recursive doubling is the best; for buffer
sizes less than or equal to 1 KB, the vendor’s algo-
rithm (for power-of-two) and binomial tree (for non-
power-of-two) are the best, but not much better than
recursive doubling; for longer buffer sizes, the ring
algorithm is good for some buffer sizes and some
number of processes less than 32. In general, on a
Cray T3E 900, the binary blocks algorithm is faster
if δexpo,max < lg(vector length in bytes)/2.0− 2.5 and
vector size ≥ 16 KB and more than 32 processes are
used. In a few cases, for example, 33 processes and
less than 32 KB, recursive halving and doubling is the
best.

Figure 15 shows the bandwidths obtained by the
various algorithms for a 32 KB buffer on the T3E. For
this buffer size, the new algorithms are clearly better
than the vendor’s algorithm (Cray MPT.1.4.0.4) and
the binomial tree algorithm for all numbers of pro-
cesses. We observe that the bandwidth of the binary
blocks algorithm depends strongly on δexpo,max and
that recursive halving and doubling is faster on 33,
65, 66, 97, 128–131 processes. The ring algorithm is
faster on 3, 5, 7, 9–11, and 17 processes.
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Figure 12: Allreduce using the recursive halving and doubling algorithm. The intermediate results after each
communication step, including the reduction operation in the reduce-scatter phase, are shown. The dotted
frames show the additional overhead caused by a non-power-of-two number of processes.

Figure 13: Allreduce using the binary blocks algorithm
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5.5 Comparison with Vendor’s MPI

We also ran some experiments to compare the perfor-
mance of the best of the new algorithms with the algo-
rithm in the native MPI implementations on the IBM
SP at San Diego Supercomputer Center, a Myrinet
cluster at the University of Heidelberg, and the Cray
T3E. Figures 16–18 show the improvement achieved
compared with the allreduce/reduce algorithm in the
native (vendor’s) MPI library. Each symbol in these
figures indicates how many times faster the best algo-
rithm is compared with the native vendor’s algorithm.

Figure 16 compares the algorithm based on two dif-
ferent application programming models on a cluster
of SMP nodes. The left graph shows that with a
pure MPI programming model (1 MPI process per
CPU) on the IBM SP, the fastest algorithm performs
about 1.5 times better than the vendor’s algorithm
for buffer sizes of 8–64 KB and 2–5 times better for
larger buffers. In the right graph, a hybrid program-
ming model comprising one MPI process per SMP
node is used, where each MPI process is itself SMP-
parallelized (with OpenMP, for example) and only
the master thread calls MPI functions (the master-
only style in [21]). The performance is about 1.5–3
times better than the vendor’s MPI for buffer sizes
4–128 KB and more than 4 processes.

Figure 17 compares the best of the new algorithms
with the old MPICH-1 algorithm on the Heidelberg
Myrinet cluster. The new algorithms show a perfor-
mance benefit of 3–7 times with pure MPI and 2–5
times with the hybrid model. Figure 18 shows that
on the T3E, the new algorithms are 3–5 times faster
than the vendor’s algorithm for the operation MPI SUM
and, because of the very slow implementation of struc-
tured derived datatypes in Cray’s MPI, up to 100
times faster for MPI MAXLOC.

We ran the best-performing algorithms for the us-
age scenarios indicated by the profiling study in [20]
and found that the new algorithms improve the per-
formance of allreduce by up to 20% and that of reduce
by up to 54%, compared to the vendor’s implementa-
tion on the T3E, as shown in Figure 19.

6 Conclusions and Future Work

Our results demonstrate that optimized algorithms
for collective communication can provide substantial
performance benefits and, to achieve the best perfor-
mance, one needs to use a number of different algo-
rithms and select the right algorithm for a partic-
ular message size and number of processes. Deter-
mining the right cutoff points for switching between

2

4

8

16

32

64

128

256

512

8  32   256  1k   8k  32k   256k  1M   8M

n
u
m

b
e
r 

o
f 
M

P
I 
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling
recursive doubling

binary blocks halving+doubling
break-even points :  size=1k and 2k  and  min( (size/256)9/16, ...)

Figure 14: The fastest algorithm for allreduce
(MPI DOUBLE, MPI SUM) on a Cray T3E 900

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256

b
a

n
d

w
id

th
 [

M
b

/s
]

number of MPI processes

buffersize = 32 kb
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling

binary blocks halving + doubling
recursive doubling

chosen best

Figure 15: Bandwidth comparison for allreduce
(MPI DOUBLE, MPI SUM) with 32 KB vectors on a Cray
T3E 900.

13



16

32

64

128

256

512

8  32   256  1k   8k  32k   256k 1M   8M

nu
m

be
r 

of
 M

P
I p

ro
ce

ss
es

buffersize [bytes]

Allreduce(sum,dbl)  -  ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio      

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.72

4

8

16

32

64

128

8  32   256  1k   8k  32k   256k 1M   8M

nu
m

be
r 

of
 M

P
I p

ro
ce

ss
es

buffersize [bytes]

Allreduce(sum,dbl)  -  ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio      

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7

Figure 16: Ratio of the bandwidth of the fastest of the new algorithms (not including recursive doubling) and
the vendor’s allreduce on the IBM SP at SDSC with 1 MPI process per CPU (left) and per SMP node (right)

4

8

16

32

64

128

256

512

8  32   256  1k   8k  32k   256k 1M   8M

nu
m

be
r 

of
 M

P
I p

ro
ce

ss
es

buffersize [bytes]

Allreduce(sum,dbl)  -  ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio      

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.72

4

8

16

32

64

128

256

8  32   256  1k   8k  32k   256k 1M   8M

nu
m

be
r 

of
 M

P
I p

ro
ce

ss
es

buffersize [bytes]

Allreduce(sum,dbl)  -  ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio      

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7

Figure 17: Ratio of the bandwidth of the fastest of the new algorithms (not including recursive doubling)
and the old MPICH-1 algorithm on a Myrinet cluster with dual-CPU PCs (HELICS cluster, University of
Heidelberg) and 1 MPI process per CPU (left) and per SMP node (right)
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Figure 18: Ratio of the bandwidth of the fastest of the new algorithms and the vendor’s algorithm for allreduce
(left) and reduce (right) with operation MPI SUM (first row) and MPI MAXLOC (second row) on a Cray T3E 900

Figure 19: Benefit of new allreduce and reduce algorithms optimized for long vectors on the Cray T3E
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the different algorithms is tricky, however, and they
may be different for different machines and networks.
At present, we use experimentally determined cutoff
points. In the future, we intend to determine the cut-
off points automatically based on system parameters.

MPI also defines irregular (“v”) versions of many
of the collectives, where the operation counts may be
different on different processes. For these operations,
we currently use the same techniques as for the regular
versions described in this paper. Further optimization
of the irregular collectives is possible, and we plan to
optimize them in the future.

In this work, we assume a flat communication model
in which any pair of processes can communicate at
the same cost. Although these algorithms will work
even on hierarchical networks, they may not be opti-
mized for such networks. We plan to extend this work
to hierarchical networks and develop algorithms that
are optimized for architectures comprising clusters of
SMPs and clusters distributed over a wide area, such
as the TeraGrid [26]. We also plan to explore the
use of one-sided communication to improve the per-
formance of collective operations.

The source code for the algorithms in Section 4 is
available in MPICH-1.2.6 and MPICH2 1.0. Both
MPICH-1 and MPICH2 can be downloaded from
www.mcs.anl.gov/mpi/mpich.
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