
Bootstrapping Parameter Space Exploration for Fast Tuning

Jayaraman J. Thiagarajan∗
Lawrence Livermore National

Laboratory
jayaramanthi1@llnl.gov

Nikhil Jain†
Lawrence Livermore National

Laboratory
nikhil@llnl.gov

Rushil Anirudh
Lawrence Livermore National

Laboratory
anirudh1@llnl.gov

Alfredo Gimenez
Lawrence Livermore National

Laboratory
gimenez1@llnl.gov

Rahul Sridhar
University of California, Irvine

rsridha2@uci.edu

Aniruddha Marathe
Lawrence Livermore National

Laboratory
marathe1@llnl.gov

Tao Wang
North Carolina State University

twang15@ncsu.edu

Murali Emani
Lawrence Livermore National

Laboratory
emani1@llnl.gov

Abhinav Bhatele
Lawrence Livermore National

Laboratory
bhatele@llnl.gov

Todd Gamblin
Lawrence Livermore National

Laboratory
gamblin2@llnl.gov

ABSTRACT
The task of tuning parameters for optimizing performance or other
metrics of interest such as energy, variability, etc. can be resource
and time consuming. Presence of a large parameter space makes a
comprehensive exploration infeasible. In this paper, we propose a
novel bootstrap scheme, called GEIST, for parameter space explo-
ration to find performance-optimizing configurations quickly. Our
scheme represents the parameter space as a graph whose connec-
tivity guides information propagation from known configurations.
Guided by the predictions of a semi-supervised learning method
over the parameter graph, GEIST is able to adaptively sample and
find desirable configurations using limited results from experiments.
We show the effectiveness of GEIST for selecting application input
options, compiler flags, and runtime/system settings for several
parallel codes including LULESH, Kripke, Hypre, and OpenAtom.

CCS CONCEPTS
• General and reference → Performance; • Theory of com-
putation→ Semi-supervised learning; •Computingmethod-
ologies → Search with partial observations;

∗J.J. Thiagarajan and N. Jain contributed equally to this work
†The corresponding author

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
ICS ’18, June 12–15, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5783-8/18/06. . . $15.00
https://doi.org/10.1145/3205289.3205321

KEYWORDS
autotuning, sampling, performance, semi-supervised learning

ACM Reference Format:
Jayaraman J. Thiagarajan, Nikhil Jain, Rushil Anirudh, Alfredo Gimenez,
Rahul Sridhar, Aniruddha Marathe, Tao Wang, Murali Emani, Abhinav
Bhatele, and Todd Gamblin. 2018. Bootstrapping Parameter Space Explo-
ration for Fast Tuning. In ICS ’18: 2018 International Conference on Supercom-
puting, June 12–15, 2018, Beijing, China. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3205289.3205321

1 INTRODUCTION
As the complexity of High-Performance Computing (HPC) and
big-data systems, software stacks, and applications continue to rise,
achieving high performance has become difficult. Most components
of these ecosystems are increasingly becoming more configurable,
and to maximize performance, correctly configuring these com-
ponents has become essential. To illustrate this concern, Figure 1
shows the distribution of runtime for Kripke [21], a transport code,
with different configurations. Here, performance varies by 1000x
depending on the choice of application parameter values for a con-
stant input problem.

The number of tunable parameters that a user can configure
has increased linearly, and as a result, the overall parameter space
has grown exponentially. In addition, optimizing for performance
metrics other than execution time, such as energy consumption,
has become increasingly essential1. Exhaustively evaluating pa-
rameter combinations for these different dependent variables is
intractable, and hence automatic exploration of parameter space,
called autotuning, is desirable.

1Throughout this paper, we use “performance” as a generic term to refer to the metric
being optimized, such as execution time, energy, and variability.

1

https://doi.org/10.1145/3205289.3205321
https://doi.org/10.1145/3205289.3205321


ICS ’18, June 12–15, 2018, Beijing, China Thiagarajan et al.

100 101 102 103

Normalized time bins - higher is worse

0

20

40

60

80

#e
xp

er
im

en
ta

l r
un

s

Variability in Kripke runtime due to input parameters

Figure 1: Sub-optimal choice of configuration can result in
up to 1000× slowdown for a constant input problem.

Autotuning requires quantifying the effects that different param-
eters will have on performance. However, making this determina-
tion a priori is usually infeasible, as it would require constructing
complex models for a variety available parameters and system en-
vironments. Therefore, autotuning frameworks typically employ
empirical approaches by collecting performance samples and ad-
justing a model to fit them. However, collecting a large number of
performance samples can be prohibitively expensive as individual
runs may take minutes to hours to complete. Autotuning there-
fore requires methods to automatically reduce the search space
of possible configurations to avoid expensive training while re-
taining enough information to determine performance-optimizing
configurations.

Traditional methods for autotuning are typically built upon
heuristics that derive from experience [9, 14]. Many of these meth-
ods often need to be reworked as new parameters become available.
Further, several existing approaches utilize simple prediction tech-
niques such as linear regression, and hence require a reasonably
large number of samples for better decision making. Recent work
has shown promise in the use of sophisticated statistical learning
techniques to build accurate and generalizable models, thus reduc-
ing the overheads of autotuning [23, 26]. In particular, adaptive
sampling, a technique in which sample collection is performed
incrementally, has produced encouraging results [10].

In this paper, we develop a new approach to minimize the num-
ber of samples being collected in order to identify high-performing
configurations, while minimizing the time spent in exploring sub-
optimal configurations. Our approach, namedGood Enough Iterative
Sampling for Tuning (GEIST), uses semi-supervised learning to ef-
fectively guide the search of high-performing configurations, while
being robust to the choice of the initial sample set.

Specifically, this paper makes the following contributions:

• We introduce GEIST, a novel semi-supervised learning-based
adaptive sampling scheme for parameter space exploration.

• We show that GEIST finds performance optimizing configura-
tions for different types of parameters including application
input options, compiler flags, and runtime/system settings.

• We show that GEIST outperforms expert configuration selection
and known sampling approaches based on random selection,
Gaussian Process [10], and Canonical Correlation Analysis [13].

• We show that GEIST uses only up to 400 samples for effectively
exploring parameter spaces with up to 25,000 configurations.

2 RELATEDWORK
Active Harmony is one of the earliest projects aimed at automatic
tuning of HPC applications [8, 9]. Since then, a variety of modeling-
based methods have been developed for fine-tuning system param-
eters [11, 29, 31]. At the compiler level, researchers have designed
machine learning-based techniques for automatic tuning of the it-
erative compilation process [25] and tuning of compiler-generated
code [24, 28]. Furthermore, several tuning approaches have been
developed for application parameter spaces [2, 3]. In general, these
approaches target a specific type or subset of parameters, and are
often restricted to a component or domain in the HPC or big-data
workflow. In contrast, the proposed work does not rely on any
domain-specific knowledge, and can take into account the com-
bined influence of different types of parameters.

There also exists a class of autotuners that are designed for multi-
objective optimization, examples include RSGDE3 [16], Periscope
Tuning Framework [14], and ANGEL [6]. These approaches sup-
port only specific types of parameters and certain distributions of
the target variable, and operate towards an absolute user-informed
objective on the target variable. On the contrary, our approach is de-
signed for handling different types of parameters and distributions,
and does not need any form of user-input.

Another important class of methods in this research direction at-
tempt to reduce the resources/time spent in autotuning, through the
use of machine learning techniques. Rafiki [22] combines neural
networks and genetic algorithms to optimize NoSQL configura-
tions for Cassandra and ScyllaDB. RFHOC [4] uses a random-forest
approach to search the Hadoop configuration space. Jamshidi et
al. [19] and Roy et al. [26] proposed the use of transfer learning
for predicting performance on a target architecture using data col-
lected from another architecture. On the other hand, Grebhahn et
al. [15] and Marathe et al. [23] utilized transfer learning to select
high-performing combination at a target configuration using do-
main knowledge extracted from other low-cost configurations. In
contrast, our approach relies solely on samples collected for the
target problem, and minimizing the number of samples collected
is a core objective. Further, our approach avoids the need to build
models that perform well for the entire configuration space, and
thus needs fewer samples.

The proposed work is most similar to prior efforts that apply
statistical machine learning techniques to bootstrap the configu-
ration sampling process [10, 13]. Ganapathi et al. [13] proposed a
Kernel Canonical Correlation Analysis (KCCA)- based approach to
derive the relationship of parameters with performance and energy.
Duplyakin et al. [10] present a Gaussian Process Regression-based
method to minimize search space for building regression-based
methods in HPC performance analysis. In the paper, we will present
a detailed comparison of our approach with these approaches, and
show that the proposed approach outperforms these approaches.

3 BOOTSTRAPPINGWITH GEIST
The main aim of the proposed work is to identify the best perform-
ing configurations for a given application and parameter options.

2



Bootstrapping Parameter Space Exploration for Fast Tuning ICS ’18, June 12–15, 2018, Beijing, China

Although well defined, the space formed by all possible parameters
is impractically large in many cases, as a result of which an exhaus-
tive search is infeasible. This section outlines the proposed strategy
for smart sampling, which seeks to identify the configurations that
result in optimal performance, while observing only a fraction of
the entire parameter space.

3.1 Performance Tuning as Adaptive Sampling
Exploring high-dimensional parameter spaces is ubiquitous in dif-
ferent application domains in HPC. One popularly adopted ap-
proach for this is to select a subset of samples from the param-
eter space with the goal of achieving an optimization objective.
In our context, a sample corresponds to a specific configuration
of system/application-level parameters, while sample collection
amounts to actually running the application with a chosen con-
figuration. Most often, the optimization objective is to identify
high-performing configurations, if not the best.

The size and complexity of the parameter space can vary sig-
nificantly across different use cases, thus making it challenging to
design a sequential sampling scheme that performs consistently
well across use cases. On one extreme, with no prior knowledge
about the space, the best one can do is to randomly draw a configu-
ration from the parameter space. On the other extreme, an expert
user can make an informed choice based on experience. While the
former approach is prone to large variability in the achievable per-
formance, the latter can be limited by the lack of a comprehensive
understanding of the interactions between different parameters.

Consequently, in practice, an iterative approach is utilized to
progressively obtain samples from regions of high-performance in
the parameter space, as determined by a predictive model. Com-
monly referred to as adaptive sampling or active learning [27], this
approach employs a surrogate model to emulate the process of
running the experiment and measuring the performance of a con-
figuration by directly predicting the performance metric. However,
such a surrogate model can be plagued by large bias and variance
characteristics, arising due to the large range of the metric values,
and the lack of a sufficient number of training samples, respectively.
Hence, resampling distributions inferred based on the resulting
models can be highly misleading.

3.2 Modeling Parameter Spaces using Graphs
In order to address the crucial challenge posed by bias and vari-
ance characteristics, we develop a novel bootstrapping approach,
called Good Enough Iterative Sampling for Tuning (GEIST), for fast
tuning of parameters to achieve optimal performance. In GEIST,
1) we represent parameter spaces using undirected graphs, 2) trans-
form the performance metric prediction task into a categorical label
prediction task, 3) utilize a state-of-the-art semi-supervised learn-
ing technique for label propagation, and 4) perform an iterative
sampling pipeline that effectively explores the regions of high-
performing parameter configurations. In the rest of this section, we
describe this proposed approach.

In contrast to conventional supervised learning approaches, the
problem of finding high performing configurations more naturally
fits a transductive learning framework [20]. In transductive learning,

we assume access to the exhaustive set of samples (only configura-
tions, not their performance) in the space that need to be classified,
prior to building the model. Given the input set of parameters and
their potential values for each application or use case, the exhaus-
tive set of parameter configurations can be easily constructed, thus
enabling the use of transductive learning.

Conversely, transductive learning is better suited for the given
problem because a broad class of semi-supervised learning meth-
ods, which often represent high-dimensional data concisely using
neighborhood graphs, fall into this category. The edges in the graph
encode the necessary information to perform crucial tasks such
as information propagation and data interpolation. Thus, these
methods can take advantage of the conventional autotuning wis-
dom that a high-performing configuration is typically near other
high-performing configurations in the parameter space.

LetG = (V ,E) denote a undirected graph, whereV is the exhaus-
tive set of parameter space configurations (|V | = N nodes), and E
is the set of edges, indicating similarity between nodes. In our con-
text, the exhaustive set of parameter configurations S = {xi }Ni=1
is used to construct the neighborhood graph G, where each node
is connected to its k nearest neighbors determined based on the
Manhattan distance (ℓ1 norm).

3.3 Reformulating Performance Prediction
As discussed in Section 3.1, using the performance metric as a re-
sponse variable can lead to models with high bias and variance.
Hence, we resort to transforming the continuous performance
metric into a categorical variable (optimal/non-optimal) and em-
ploy semi-supervised label propagation to predict the labels at all
configurations in S. Given a relatively small, initial sample set
S0 = {xi }

N0
i=1 generated using uniform random sampling, we per-

form the experiments and build the dataset comprised of the tuples
{(xi ,yi )}

N0
i=1 of size N0, where yi denotes the performance metric

(e.g. run time or energy) for each case. Without loss of general-
ity, we always define our performance metric in such a way that
its value needs to be minimized. Following this, we transform the
performance metric for each sample into a categorical label:

L(xi ) =

{
optimal, if yi ≤ ∆ℓ ,

non-optimal, otherwise,
(1)

where ∆ℓ denotes the threshold on the performance metric to qual-
ify an experimental run as “optimal”. The choice of the hyper-
parameter ∆ℓ will be discussed in Section 4.3.1.

3.4 Semi-Supervised Label Propagation
We now describe how the performance labels are propagated using
the parameter space graph and training sample set. The problem of
propagating labels to nodes in a graph has been well-studied in the
machine learning literature under the context of semi-supervised
learning [5]. Formally, given a partially labeled graphG , label prop-
agation is aimed at estimating the label probability pik that a node
i is associated with label k . Based on these estimated probabili-
ties, a classification function C(xi ) = argmaxk pik can then be
used to predict the label for that node. In this paper, we utilize
Confidence Aware Modulated Label Propagation (CAMLP) [30],

3



ICS ’18, June 12–15, 2018, Beijing, China Thiagarajan et al.

Experimental 
Runs

Define Labels 
for Optimality

Graph 
Construction

Label 
Propagation

Candidate 
Selection

Bootstrap Sample 

Uniform 
Sampling

Parameter Space

Choose 
Configuration

Figure 2: (left) GEIST: Steps for finding high-performing configurations through iterative sampling; (right) Demonstration
of the semi-supervised label propagation algorithm used in GEIST. In this example, the large-sized orange and blue nodes
correspond to the labeled training samples for optimal and non-optimal configurations respectively. For the rest of the nodes,
we used the CAMLP algorithm to propagate the labels, thus predicting the optimality of different configurations in the space.

a state-of-the-art semi-supervised learning algorithm, to perform
label propagation.

Broadly speaking, label propagation predicts the labels at unla-
beled nodes recursively based on labels of their neighbors. During
this process, the predictions are progressively improved until they
converge to a stable state. Though a wide variety of strategies ex-
ist for propagation, CAMLP achieves improved performance by
taking into account both the prior belief at a node and the informa-
tion propagated from its neighbors during the prediction process.
Formally, the label probability at node i for class k is expressed as:

pik =
1
Zi

©­«bik + β
∑

j ∈N(i)

Wi jpjk
ª®¬ . (2)

Here, bik denotes the prior belief on associating node i with label k ,
N(i) refers to the set of neighbors of the node i , pjk indicates how
strongly a neighboring node j believes that node i has the label k ,
andWi j is the edge strength between nodes i and j from the adja-
cency matrix of G. The term β (≥ 0) is referred to as the influence
strength parameter, and Zi is a normalization constant to ensure
that pik sums to 1 for each node i . If a node has a large number of
labeled neighbors, it receives a large amount of information from
them, thus ignoring the prior belief entirely. In contrast, if a node
has only a few labeled neighbors, the prior belief dominates the
estimate in Eq. (2).

In summary, CAMLP starts with arbitrary values for pik and
converges to the final predictions by iteratively computing

P t = Z−1
(
B + βWP t−1

)
, (3)

where t and t − 1 correspond to the current and previous iterations
of the label propagation respectively. Note that this is the matrix
form of the expression in Eq. (2). Figure 2 (right) demonstrates
the working of both the graph construction and label propagation
steps. The larger sized nodes indicate the configurations for which
we have already collected the data, and the node color indicates
its optimality (orange denotes optimal). Using the graph structure,
the CAMLP algorithm recursively propagates the information and
predicts the label at every other unlabeled node in the space (smaller
sized nodes). This process has effectively created a distribution in

the parameter space that indicates that every orange node has an
equally likely chance of being a high-performing configuration,
while blue nodes have no evidence of being high-performing. We
utilize this labeling scheme to design an iterative algorithm for
progressively sampling expected high-performing configurations
from S, while avoiding the selection of other configurations.

3.5 GEIST Algorithm
An overview of the proposed iterative scheme that utilizes the tech-
niques described in this section so far is shown in Figure 2 (left)
and Algorithm 1. Starting with a uniformly random selection of
training samples from the parameter space as the bootstrap set,
GEIST uses semi-supervised label propagation to identify poten-
tially optimal candidates from the unseen set. For a random subset
of those potentially optimal candidates, experimental results are
obtained and the subset is added to the bootstrap set. Next, the steps
of semi-supervised label propagation, random subset selection from
the potentially optimal candidates, experimental results collection
for the subset, and expansion of the bootstrap set using the subset
are performed iteratively.

The number of iterations for which GEIST is run can either be
determined by the number of experiments that can be executed
based on resource availability, or can be based on the configurations
obtained in every iteration. For example, if the minimum runtime
of configurations obtained so far does not improve in consecutive
iterations, the process can be terminated.

Overall, the iterative process of GEIST is trying to explore neigh-
borhoods of high-performing configurations in order to find more
high-performing configurations. As such, unlike conventional con-
vex optimization strategies, GEIST does not rely on a single gra-
dient direction to identify the global minimum. Instead, the semi-
supervised learning strategy of GEIST can be interpreted as a collec-
tion of multiple locally meaningful models, which ends up sampling
both local and global minima alike. Intuitively, by progressively
sampling in this way, GEIST can better resolve different neighbor-
hoods in the parameter space, and potentially even identify the
globally optimal configuration, sopt .

4



Bootstrapping Parameter Space Exploration for Fast Tuning ICS ’18, June 12–15, 2018, Beijing, China

Algorithm 1 GEIST Algorithm
1: Inputs:
2: Parameter spaceS, initial sample sizeN0, threshold∆ℓ , number

of iterations T , number of samples added in each iteration N+.
3: procedure
4: Initialize bootstrap set B = {}.
5: Initialize unseen test setU = S.
6: Generate a uniform random sample S0 of size N0 from S.
7: Update B = B

⋃
S0.

8: Construct neighborhood graph G for S.
9: loop for T iterations:
10: Run experiments for samples in B and build {(xi ,yi )}i ∈B .
11: UpdateU = U\B.
12: Compute categorical label L(xi ), ∀i ∈ B using Eq. 1.
13: Predict the labels for all configurations inU using CAMLP.
14: Randomly select N+ optimal cases fromU to build S+.
15: Update B = B

⋃
S+.

3.6 Success Metrics
A high-fidelity adaptive sampling strategy is expected to recover
most of the optimal configurationswhile observing the least number
of training samples. In a typical scenario, this is measured by the
accuracy of the semi-supervised learning approach. However, such
an evaluation is not applicable here since we are not interested in
recovering the low-performing configurations, and thus are not
trying to generate a methodology that predicts well for the entire
parameter space. As a result, we adopt the following metrics:
1. Percentile score of ∆ℓ (PSD-L). This measures howmany sam-
ples have been added below the initial tolerance threshold ∆ℓ . A
good sampling strategy is expected to add a large number of config-
urations with performancemetricyi lower than the initial threshold
∆ℓ and thus lower the cost of sample collection. We measure PSD-
L in the bootstrap set B during every iteration, and expect it to
increase in every iteration.
2. Percentile score of ∆h (PSD-H). Like ∆ℓ , let us define ∆h to
be the threshold beyond which a configuration is qualified as a
low-performing configuration. PSD-H measures how many sam-
ples are added above the threshold ∆h . We expect a good strategy
to minimize the inclusion of low-performing configurations, and
consequently, we also expect it to increase in every iteration.
3. Best Performing Configuration (BPC). A more straightfor-
ward metric is to track the best-performing configuration in the
bootstrap set in each iteration of the sampling process. We expect
an effective algorithm to identify a high-performing configuration
within a few iterations of bootstrapping. In particular, we also ex-
pect this best performance to be close to the global optimum in the
parameter space, if not the best.

4 EVALUATION SETUP AND DATASETS
In order to evaluate the proposed adaptive sampling approach,
GEIST, and compare it with existing approaches, we autotune dif-
ferent types of parameters for optimizing performance metrics such
as the execution time and the total energy consumed, of different
benchmark applications.

4.1 Benchmarks and Parameter Sources
Weuse a combination of benchmarks andmultiple sources of param-
eters to create a diverse set of scenarios. In particular, we perform
autotuning for compiler flags, application-specific parameters, and
runtime options (e.g. OpenMP thread count, power cap).
OpenAtom. OpenAtom [18] is a scalable Charm++-based [1] par-
allel simulation software for studying atomic, molecular, and con-
densed phase material systems based on quantum chemical prin-
ciples. Similar to other Charm++ applications, OpenAtom allows
end users to over-decompose the physical domain and the associ-
ated work/data units. In order to achieve high performance, it is
critical to choose the right level of over-decomposition for different
work/data units, and is the subject of our autotuning experiments.
LULESH and compiler flags. LULESH is a shock hydro mini-app
developed at Lawrence Livermore National Laboratory. It performs
a hydrodynamics stencil calculation using both MPI and OpenMP
to achieve parallelism. Among other features, LULESH stresses
compiler vectorization, OpenMP overheads, and on node paral-
lelism. Hence, we use LULESH to study and find compiler flags that
improve the execution time for single-node runs.
Hypre. Hypre [12] is a parallel linear solver library used in many
production applications. It supports many solvers and smoothers,
characterized by varying performance and scaling properties. new_ij
is a test program that allows evaluation of these different options. In
this work, we autotune these options and their associated parame-
ters for solving the Laplacian test problem. Laplacian is a 3D Laplace
problem discretized using a 27-point finite difference stencil.
Kripke. Kripke is a proxy application for a production transport
code for particle physics [21]. In order to enable exploration of novel
architectures, it provides several input parameters that change the
data structures and code flow, but do not impact the science output.
In addition, it can be parallelized using OpenMP. We autotune
all these parameters to optimize execution time as well as energy
consumption in the presence of a tunable, hardware-enforced power
bound.
RAJA policies. RAJA [17] is an abstraction layer for defining loop-
ing regions of code that enables developers to easily modify the
underlying implementation of different loops without having to
rewrite their code. Instead of explicitly writing loops, developers
use RAJA to define the body of a loop and its associated “policy”,
which describes the loop iteration space, the runtime framework
for executing it (e.g., sequential or SIMD), and the desired loop
iteration order. We autotune parameters of the RAJA loop policies
for six different loops in Kripke to optimize overall execution time.

Table 1 summarizes the test cases we use in this paper. Each of
these scenarios is discussed in detail in Section 5.

4.2 Distribution of Observed Performance
Figure 3 presents the distribution of the observed performance
for different datasets summarized in Table 1. We present these
distributions in order to develop familiarity with the search space
over which autotuning is being carried out. Note that GEIST, in
general and for the results shown in Section 5, does not use any
prior knowledge of performance distribution over the search space.

5



ICS ’18, June 12–15, 2018, Beijing, China Thiagarajan et al.

Table 1: Parameter space and performance metric for the use cases explored.

Application Metric Parameter type(s) Parameters Parameter space

LULESH Runtime Compiler flags -ipo, -fbuiltin, -unroll, -inline-level, -falign-functions etc. 4,800 - 25,920
OpenAtom Runtime Decomposition #chares for electronic states, density, FFT, pair calculation, etc. 8,928
Hypre Runtime Solver solver, smoother, coarsening scheme, interpolation operator 4,580 - 25,198
Kripke Runtime Application nesting order, group set, direction set, #OpenMP threads 1,600
Kripke Energy Application, system power cap and all of above 17,815
RAJA Runtime Loop policy 6 loops: sequential, thread-parallel, nested parallelism strategy 18,000

1 2 3 4 5 6
Execution time (s)

0

100

200

300

#c
on

fig
ur

at
io

ns

(a) OpenAtom: different decompositions

4 6 8 10 12 14
Execution time (s)

0

100

200

#c
on

fig
ur

at
io

ns

(b) Lulesh: compiler flags

0 20 40 60 80 100
Execution time (s)

100

101

102

103

#c
on

fig
ur

at
io

ns

(c) RAJA: loop parallelization policies

100 101 102 103

Execution time (s)

0

100

200

300

#c
on

fig
ur

at
io

ns

(d) Hypre runtime: choice of solver

101 102 103

Execution time (s)

0

20

40

60

#c
on

fig
ur

at
io

ns

(e) Kripke runtime: application parameters

103 104 105 106

Energy (Joules)

0

250

500

750

#c
on

fig
ur

at
io

ns

(f) Kripke energy: several sources

Figure 3: Examples of distribution of performing metrics to be optimized for various applications due to different sources of
parameters. Note the log-scale on the x-axis in the second row due to the large range of the metric.

The evaluation cases that we present in this paper, and other
datasets that we have studied, can be broadly divided into three cate-
gories. The first category of cases consists of many high-performing
configurations. For example, execution times of OpenAtom and
LULESH (Figures 3a,3b) over their corresponding parameter spaces
exhibit heavily loaded bins on the left. It is interesting to note that,
while the performance distribution for OpenAtom shows a single
mode at lower execution times, LULESH exhibits a more complex
distribution with multiple modes, but still contains strong modes at
the bins to the left. For such distributions, it is relatively easy to find
a few high-performing configurations because of their abundance.

The second category of cases includes those with few samples
close to best performance, followed by bins with higher occupancy,
often containing configurations with moderately high performance.
Results obtained for Hypre and Kripke (Figures 3d, 3e, 3f) are exam-
ples of such distributions (note the log-scale on the x-axis). For such
scenarios, while finding a few good configurations is easy, identify-
ing the configurations with the highest performance is hard.

The last category is comprised of datasets that are heavily dis-
tributed to the right, i.e. they exhibit very few high-performing
configurations and most of the configurations provide poor perfor-
mance. Among our datasets, autotuning of RAJA policies, shown in
Figure 3c, is one such scenario. This category is the most challeng-
ing in terms of finding high and/or good performing configurations.

4.3 Evaluation Methodology
We evaluate the effectiveness of GEIST using the percentile scores
of ∆ℓ (PSD-L) and ∆h (PSD-H) and best-performing configuration
(BPC) metrics described in Section 3.6, and compare against several
other approaches (Section 4.4). In order to obtain these metrics, the
same input is provided to all methods: a benchmark with a list of
parameters and the values each of these parameters can take.

Each method is allowed to query an oracle with a list of con-
figurations (samples) iteratively, for which the oracle provides the
experimental value for the metric being optimized. The metric is
obtained by conducting a real-world experiment for the given con-
figuration. In our evaluation, for efficiency reasons and for reducing
the effect of external factors, we pre-run all configurations and store
the information. The oracle simply reads the metric values for the
configurations requested by the method from this key-value store.
The performance metric values are always stored in a form where
lower values are preferred.

4.3.1 Hyper-parameter Selection. All the adaptive samplingmeth-
ods used in our evaluation, including GEIST, require the selection of
four hyper-parameters: size of the initial sample set N0, the thresh-
olds on the performance metric for classifying a configuration as
high-performing ∆ℓ and low-performing ∆h , and the number of
samples to be added incrementally in each iteration N+.

In order to ensure statistical stability of the results, N0 cannot be
very small; hence for each dataset and method, we set N0 ∼ 90 con-
figurations. For similar reasons, we set N+ ∼ 50 for all cases, except

6



Bootstrapping Parameter Space Exploration for Fast Tuning ICS ’18, June 12–15, 2018, Beijing, China

2.0% 
(96)

4.1% 
(196)

6.2% 
(296)

8.2% 
(396)

10.3% 
(496)

Bootstrapped Sample Size

5

10

15

20

25

Pe
rc

en
til

e 
Sc

or
e 

of
 

High Performing Configurations

Random
Gaussian Process

CCA
GEIST

2.0% 
(96)

4.1% 
(196)

6.2% 
(296)

8.2% 
(396)

10.3% 
(496)

Bootstrapped Sample Size

88

90

92

94

96

Pe
rc

en
til

e 
Sc

or
e 

of
 

h

Low Performing Configurations
Random
Gaussian Process

CCA
GEIST

2.0% 
(96)

4.1% 
(196)

6.2% 
(296)

8.2% 
(396)

10.3% 
(496)

Bootstrapped Sample Size

2.72

2.73

2.74

2.75

2.76

2.77

2.78

2.79

2.80

Ex
ec

ut
io

n 
tim

e 
(s

)

Best Configuration
Exhaustive best
Random
Gaussian Process

CCA
GEIST

Figure 4: LULESH: GEIST finds 2.6× the number of high-performing configurations in comparison to other methods. CCA is
best in avoiding low-performing samples. All methods quickly find configurations close to the global optimum (within 1%).

Kripke for which N+ = 16 because that dataset is relatively small.
The choice of ∆ℓ can depend on the type of application, parameters
being tuned, and size of the parameter space. One would prefer
to have a very low ∆ℓ if the parameter space is large, or if one
desires to aggressively search for only the very best configuration.
However, it is prudent to set ∆ℓ and N+ in a way that facilitates
the models built for a dataset to provide enough samples for it-
eratively populating the configuration query list to the oracle. In
order to avoid any bias towards a method or from past experience
with the benchmarks, we choose ∆ℓ to be the 5th percentile of the
performance metrics from the initial sample set S0 for all datasets.

The choice of ∆h does not impact the sampling method and is
used for evaluation purpose only. We set it to be the 90th percentile
in the initial set, and measure how many extremely slow configu-
rations, and hence experiments, can a method avoid. Finally, the
number of iterations, which in practice should be determined by the
number of experiments that can be run and the trend in the results
obtained, is set to 8 for all methods; we intend to study the trends
observed for different datasets and methods across iterations.

4.4 Competing Methods
We now briefly describe the other configuration selection methods
that we use for comparison in our experiments.
1. Random Selection: This is the simplest of all sampling strategies,
where we add a random set of N+ samples in each iteration to the
bootstrap set. While random sampling is expected to have a large
variance, it can be particularly poor at finding good configurations
using only a limited number of samples.
2. Gaussian Process-based Adaptive Sampling: This is a common sam-
pling technique in UQ (Uncertainty Quantification) applications,
where the samples to be added to the training set are chosen based
on both the expected metric value and the prediction uncertainty
from a Gaussian Process regressor. The intuition here is that pre-
dictions with a large variance lie in regions of high uncertainty.
Hence, in each iteration, we add samples that are predicted to be
high performing, as well as the ones with large variance, to improve
the model in the subsequent iterations.
3. CCA based Neighborhood Selection: Similar to the approach in
[13], we utilize canonical correlation analysis to learn a mapping
V such that VT X is maximally correlated with the performance
metric y, using the samples in the bootstrap set. In each iteration,

we choose N+ nearest neighbors to the current best configuration
and add them to the bootstrap set.
4. Expert Choice: We include performance against a manually deter-
mined near-optimal configuration by an expert practitioner.
5. Exhaustive Search (Oracle): In order to get a sense of how well
we are able to find the optimal configuration(s), we also compare
our method against the best performance that can be obtained on
an application, that is found using an exhaustive search.

5 EVALUATION
In this section, we evaluate and compare GEIST with other methods
described in Section 4.4 on the benchmark datasets in Table 1. For
each dataset, we perform 50 adaptive sampling experiments for
everymethod, and report the observedmean and standard deviation
for each of the metrics. For all methods and data sets, the same set
of 50 random seeds was used for generating the initial sample sets.

5.1 Compiler Flags for LULESH
Users often rely on the default choice of flags enabled by the -O3 flag
to obtain the best performance that can be provided by a compiler.
However, it has been shown that the default options enabled by
-O3 may not be best-suited for every application, and performance
can be gained by tuning the individual flags [7].

We autotune the compiler flags for LULESH as our first use case.
Because we want to compare the best-performing configuration
obtained by various methods with the exhaustive best, we limit our
exploration to 9-10 compiler flags, so that exhaustive collection of
data is possible. Some of the flags used are listed in Table 1. The
runtime obtained with the -O3 flag is 6.02 seconds.

Figure 4 compares the results obtained for autotuning using
GEIST and other competing methods. The initial sample size for
these experiments was 96, and 50 samples were added in every
iteration. We observe that GEIST finds significantly more (∼ 2.6×)
high-performing configurations in comparison to other methods.
GEIST also outperforms random selection and Gaussian Process
based sampling in avoiding low-performing configurations, but
CCA outperforms GEIST in that metric. All methods quickly find
configurations close to the global optimum, which is not far away
from the best configuration in the initial random sample set. This
result can be explained by the distribution presented in Figure 3b,
which shows that several high-performing configurations exist.

7



ICS ’18, June 12–15, 2018, Beijing, China Thiagarajan et al.

1.0% 
(89)

2.1% 
(189)

3.2% 
(289)

4.4% 
(389)

5.5% 
(489)

Bootstrapped Sample Size

5

10

15

20

25

30

35

40

45

Pe
rc

en
til

e 
Sc

or
e 

of
 

High Performing Configurations

Random
Gaussian Process

CCA
GEIST

1.0% 
(89)

2.1% 
(189)

3.2% 
(289)

4.4% 
(389)

5.5% 
(489)

Bootstrapped Sample Size

84

86

88

90

92

94

96

98

Pe
rc

en
til

e 
Sc

or
e 

of
 

h

Low Performing Configurations

Random
Gaussian Process

CCA
GEIST

1.0% 
(89)

2.1% 
(189)

3.2% 
(289)

4.4% 
(389)

5.5% 
(489)

Bootstrapped Sample Size

1.24

1.26

1.28

1.30

1.32

1.34

1.36

1.38

Ex
ec

ut
io

n 
tim

e 
(s

)

Best Configuration
Exhaustive best
Random
Gaussian Process

CCA
GEIST

Figure 5: OpenAtom: GEIST discovers significantly higher number of high-performing configurations, and avoids low-
performing configurations in comparison to other methods. GEIST and Gaussian Process are able to find configurations that
perform close to the optimum (within 3% of the global best) using only 189 observations (90 initial + 50 each in 2 iterations).

2.0% 
(91)

4.2% 
(191)

6.3% 
(291)

8.5% 
(391)

10.7% 
(491)

Bootstrapped Sample Size

6

8

10

12

14

Pe
rc

en
til

e 
Sc

or
e 

of
 

High Performing Configurations
Random
Gaussian Process

CCA
GEIST

2.0% 
(91)

4.2% 
(191)

6.3% 
(291)

8.5% 
(391)

10.7% 
(491)

Bootstrapped Sample Size

88

89

90

91

92

93

94

95

Pe
rc

en
til

e 
Sc

or
e 

of
 

h

Low Performing Configurations
Random
Gaussian Process

CCA
GEIST

2.0% 
(91)

4.2% 
(191)

6.3% 
(291)

8.5% 
(391)

10.7% 
(491)

Bootstrapped Sample Size

3.4

3.6

3.8

4.0

4.2

4.4

Ex
ec

ut
io

n 
tim

e 
(s

)

Best Configuration
Exhaustive best
Random
Gaussian Process

CCA
GEIST

Figure 6: Hypre: GEIST finds near-optimal configuration using only 341 samples (91 initial + 50 each in 5 iterations). These
configurations are 5.6% and 9% faster than those found by Gaussian Process and CCA, respectively, using 341 samples.

Nonetheless, the best-performing configuration obtained from all
methods is significantly (2.2×) faster than the typical default of -O3.

We also performed similar experiments with three other sets of
compiler flags for parameter space sizes up to 25,920. For all scenar-
ios, we obtained data distributions and autotuning results similar
to those presented above. However, the global best performance
obtained heavily depends on the compiler flags being explored and
ranges from 2.72s to 5.92s. Nonetheless, all methods are able to find
configurations that perform close to the optimum, and GEIST finds
significantly more high-performing configurations.

5.2 Decomposition Selection for OpenAtom
In OpenAtom, users can decompose different tasks into different
numbers of work units. This flexibility leads to a large parameter
space, in which each configuration can take several minutes to exe-
cute. For the science problem simulated in this paper (32 molecules
of Water on 128 nodes of a Blue Gene/Q [18]), an expert user would
choose a configuration that takes 1.6 seconds per step.

Figure 5 shows that, similar to LULESH, GEIST identifies signifi-
cantly higher (4×) number of high-performing configurations in
comparison to the other methods. Unlike other methods, GEIST also
successfully avoids exploring low-performing configurations. How-
ever, like LULESH, the dataset of OpenAtom tested by us contains
many high-performing configurations (Figure 3a) and hence most
methods are able to quickly find near-optimal (within 3% of the
global best of 1.24 s) configurations in 2 to 3 iterations of adaptive
sampling. Gaussian Process based sampling and GEIST requires

the minimum number of samples (189) to find these configurations,
while random selection performs the worst and needs 389 samples.

5.3 Solver Selection for Hypre
The new_ij benchmark of the hypre suite allows the use of four
parameters: solver, smoother, coarsening scheme, and interpolation
operator, which can create a parameter space of size 4, 580. By also
modifying the power bounds, this parameter space increases to up
to 25, 198. We autotuned parameters with and without including
different power bounds, and achieved similar results for both, so
henceforth we discuss the results without power bounds only.

Figure 6 shows that, except random selection, all other methods
are able to find many high-performing configurations. However,
only GEIST is able to iteratively improve the performance of config-
urations found, thus determining configurations within 3% of the
global best. These configurations found by GEIST are 5.6% and 9%
better than the best configurations found by the next best methods,
Gaussian Process and CCA, respectively. Moreover, it only takes
341 samples for GEIST to find the near-optimal configurations.

GEIST is able to outperform other methods for hypre because it
is able to identify the very few high-performing configurations that
are in the left-most bins of Figure 3d. While other methods are able
to only find the good configurations from heavily occupied bins,
GEIST is able effectively to explore the neighborhoods of those
configurations and find the near-optimal configurations.

8



Bootstrapping Parameter Space Exploration for Fast Tuning ICS ’18, June 12–15, 2018, Beijing, China

5.0% 
(80)

7.0% 
(112)

8.9% 
(144)

10.9% 
(176)

12.9% 
(208)

Bootstrapped Sample Size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Pe
rc

en
til

e 
Sc

or
e 

of
 

High Performing Configurations
Random
Gaussian Process

CCA
GEIST

5.0% 
(80)

7.0% 
(112)

8.9% 
(144)

10.9% 
(176)

12.9% 
(208)

Bootstrapped Sample Size

87

88

89

90

91

92

93

Pe
rc

en
til

e 
Sc

or
e 

of
 

h

Low Performing Configurations

Random
Gaussian Process

CCA
GEIST

5.0% 
(80)

7.0% 
(112)

8.9% 
(144)

10.9% 
(176)

12.9% 
(208)

Bootstrapped Sample Size

9

10

11

12

13

14

Ex
ec

ut
io

n 
tim

e 
(s

)

Best Configuration

Exhaustive best
Random
Gaussian Process

CCA
GEIST

Figure 7: Kripke time: GEIST outperforms all other methods and finds configurations that are within 19% and 10% of global
best using 144 and 208 samples. The next best method is random selection which is 30% and 26% slower than the global best for
these sample counts. Note that due to the small size of this dataset, only 16 samples are added in each iteration.

0.5% 
(89)

1.1% 
(189)

1.6% 
(289)

2.2% 
(389)

2.7% 
(489)

Bootstrapped Sample Size

10

20

30

40

50

Pe
rc

en
til

e 
Sc

or
e 

of
 

High Performing Configurations

Random
Gaussian Process

CCA
GEIST

0.5% 
(89)

1.1% 
(189)

1.6% 
(289)

2.2% 
(389)

2.7% 
(489)

Bootstrapped Sample Size

88

90

92

94

96

98

Pe
rc

en
til

e 
Sc

or
e 

of
 

h

Low Performing Configurations

Random
Gaussian Process

CCA
GEIST

0.5% 
(89)

1.1% 
(189)

1.6% 
(289)

2.2% 
(389)

2.7% 
(489)

Bootstrapped Sample Size

2600

2800

3000

3200

3400

En
er

gy

Best Configuration
Exhaustive best
Random
Gaussian Process

CCA
GEIST

Figure 8: Kripke energy: GEIST is significantly better at finding low-energy configurations, avoiding very high-energy config-
urations, and finds configurations that consume ∼ 9% lower energy than configurations found by other methods.

5.4 Kripke: Time and Energy Optimization
In order to explore different architectural features and provide
performance portability, Kripke provides several application-level
options to change the code control flow without changing the sci-
ence performed. Table 1 list these options: different orderings for
executing compute kernels, number of group and energy sets to
overlap computation and communication, and the OpenMP thread
count. We explore this space to find configurations with minimum
runtime. Additionally, by enabling power capping, we also search
for configurations that minimize total energy consumption of the
execution. An expert user’s choice in this benchmark would have
been to manually test for each loop ordering with a few group/en-
ergy sets, and optimize for energy at 2nd -3rd highest power level.
This would have resulted in the execution time of 15.2 seconds and
energy consumption of 4,742 Joules.

Figure 7 shows that GEIST outperforms all other methods com-
prehensively in finding configurations with low execution time,
and is also better at avoiding configurations with high execution
time. GEIST finds configurations that are within 19% and 10% of the
globally optimal configuration of 8.43s using only 144 and 208 sam-
ples, respectively. These runtimes are significantly better than the
runtimes obtained using random selection (27%), Gaussian Process
(48%), and CCA (59%) methods, with a total sample size of 208.

Similar results are obtained for optimizing energy consumption,
as shown in Figure 8. GEIST finds significantly higher numbers
of low-energy configurations (6×) and is also the best method for

avoiding high-energy configurations. For any given iteration or
sample count, GEIST finds best configurations that consume ∼ 9%
lesser energy than best configurations discovered by other methods.
The best configuration found by GEIST is within 4% of the global
optimum of 2,533 Joules and needs only 2.5%(339) samples of the
total parameter space.

Like hypre, we believe that GEIST is able to improve upon other
methods for finding the best-performing configurations because
of the distribution of Kripke datasets (Figures 3e and 3f). GEIST
uses the parameter graph neighborhood relations to explore the
neighborhoods of high-performing configurations and find the few
near-optimal configurations in the left-most bins.

5.5 Selecting RAJA policies
Six different RAJA loops were used in our benchmark, five of which
are nested loops with three to five nesting levels. The underlying
loop policies for each of these loops can be chosen at runtime, and
includes options to execute sequentially or with thread parallelism
and to select the nesting level to invoke a parallel OpenMP region.
Since different loop policies populate processor caches differently,
we cannot tune loops independently andmust explore the combined
space of all policies and loops. An expert user would use OpenMP
at the outermost level and obtain 57.2s runtime.

Figure 9 compares the quality of configurations discovered by
GEIST with other methods. With increasing iteration count and
samples, we find that GEIST progressively gets better at selecting
high-performing configurations while all other methods exhibit

9



ICS ’18, June 12–15, 2018, Beijing, China Thiagarajan et al.

0.5% 
(90)

1.1% 
(190)

1.6% 
(290)

2.2% 
(390)

2.7% 
(490)

Bootstrapped Sample Size

5

10

15

20

25

30

Pe
rc

en
til

e 
Sc

or
e 

of
 

High Performing Configurations
Random
Gaussian Process

CCA
GEIST

0.5% 
(90)

1.1% 
(190)

1.6% 
(290)

2.2% 
(390)

2.7% 
(490)

Bootstrapped Sample Size

88

90

92

94

96

98

Pe
rc

en
til

e 
Sc

or
e 

of
 

h

Low Performing Configurations

Random
Gaussian Process

CCA
GEIST

0.5% 
(90)

1.1% 
(190)

1.6% 
(290)

2.2% 
(390)

2.7% 
(490)

Bootstrapped Sample Size

0

10

20

30

40

50

Ex
ec

ut
io

n 
tim

e 
(s

)

Best Configuration
Exhaustive best
Random
Gaussian Process

CCA
GEIST

Figure 9: RAJA policy: For this heavily skewed dataset, GEIST is the only method that identifies configurations close to the
global optimum. Configurations obtained using GEIST are 2.4× and 2× slower than the global optimum using 290 and 490
samples respectively, while the second best method (Gaussian Process) finds configurations that are 6.5× and 5.22× slower.

Table 2: Results summary. Units: runtime - seconds, energy - Joules. Collection cost includes compilation and runtime.

Application/ Parameter space Exhaustive Expert Competition best GEIST best #samples used
Metric size (collection cost) best perf. best perf perf (%high confs) perf (%high confs) (collection cost)

Lulesh/Runtime 4,800 (19.9 hrs) 2.72 6.02 (-O3) CCA - 2.74 (9) 2.73 (24) 246 (1.4 hrs)
OpenAtom/Runtime 8,928 (111.6 hrs) 1.24 1.6 (symmetric decomposition) GP - 1.25 (10) 1.26 (39) 189 (2.4 hrs)
Hypre/Runtime 4,580 (24.9 hrs) 3.40 Unknown GP - 3.70 (9) 3.51 (11) 341 (1.6 hrs)
Kripke/Runtime 1,600 (38.9 hrs) 8.43 15.2 (few sets and threads) Rand - 10.6 (5) 9.27 (17) 208 (4 hrs)
Kripke/Energy 17,815 (321K J) 2533 4742 (2nd -3rd highest power) CCA - 2906 (7) 2652 (43) 339 (1836 J)
RAJA/Runtime 18,000 (444 hrs) 2.43 57.28 (all OpenMP) GP - 12.6 (7) 4.61 (28) 390 (8.6 hrs)

marginal improvement. Similar trends are observed for selection of
low-performing configurations, wherein GEIST progressively gets
better at avoiding low-performing configurations.

Figure 9 also shows that the best configurations discovered by
GEIST are ∼ 2.7× faster than the best configurations found us-
ing other methods. GEIST produces configurations that are 2.4×
and 2× slower than the global optimal of 2.43s using only 290
and 490 samples respectively. In contrast, the second best method
(Gaussian Process) can only identify configurations that are 6.5×
and 5.22× slower for these sample counts. These results highlight
that when the distribution is heavily skewed to the left (Figure 3c),
GEIST is significantly better than known methods in finding high-
performing neighborhoods and best configurations within those
neighborhoods. In summary, regardless of the inherent distribution
of the performance metric in their corresponding parameter spaces,
GEIST produces near-optimal configurations for all benchmarks
while consistently outperforming all competing methods.

6 DISCUSSION AND CONCLUSION
Table 2 summarizes the evaluation results presented in this paper.
Broadly speaking, we see that for all test cases, GEIST is able to
find high-performing configurations that are closer to the global
optimum with fewer samples in comparison to other methods. The
method which is second best to GEIST varies with the dataset
being tuned. Furthermore, because GEIST quickly finds more high-
performing configurations than other methods, each training itera-
tion becomes progressively cheaper to sample than the previous,
thus speeding up the process towards convergence.

An in-depth look at the optimal configurations selected revealed
that often times, the configurations that provide the best perfor-
mance are not intuitive, nor are they well-known to expert users.
For example, in OpenAtom, the expert users tend to pick symmetric
decompositions for multi-dimensional physical entities. However,
significantly better performance is obtained using asymmetric de-
compositions (1.6s vs 1.26s). Similarly, for RAJA policies, experi-
enced users expect OpenMP loop at outermost levels to work well,
but we find that a complex combination of loop levels provides sig-
nificantly better performance (57.28s vs 4.61s). Nonetheless, despite
being unaware of the domain or parameter types, GEIST is able to
find high-performing configurations after few sampling iterations.

Finally, our study suggests that the difference between high-
performing configurations chosen by GEIST and other methods
increases as the distributions of performance metrics move to the
right; i.e., when fewer high-performing configurations are available,
GEIST is able to find them, but other methods do not. This is in-
herent in the design of GEIST, which uses sampling to intelligently
avoid large parameter spaces with under-performing samples.

In conclusion, we have presented and shown that an adaptive
sampling strategy that is able to exploit neighborhood relationships
among configurations in the parameter space is very good at finding
near-optimal configurations with few samples. We hope that this
scheme, which does not require information about the domain,
metric distribution, or user input, will help the HPC community
autotune its codes using minimal resources.

REFERENCES
[1] Bilge Acun, Abhishek Gupta, Nikhil Jain, Akhil Langer, Harshitha Menon,

Eric Mikida, Xiang Ni, Michael Robson, Yanhua Sun, Ehsan Totoni, Lukasz
Wesolowski, and Laxmikant Kale. 2014. Parallel Programming with Migratable

10



Bootstrapping Parameter Space Exploration for Fast Tuning ICS ’18, June 12–15, 2018, Beijing, China

Objects: Charm++ in Practice (SC).
[2] Prasanna Balaprakash, Robert B Gramacy, and Stefan M Wild. 2013. Active-

learning-based surrogate models for empirical performance tuning. In Cluster
Computing (CLUSTER), 2013 IEEE International Conference on. IEEE, 1–8.

[3] David Beckingsale, Olga Pearce, Ignacio Laguna, and Todd Gamblin. 2017. Apollo:
Reusable models for fast, dynamic tuning of input-dependent code. In Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE.

[4] Z. Bei, Z. Yu, H. Zhang, W. Xiong, C. Xu, L. Eeckhout, and S. Feng. 2016. RFHOC:
A Random-Forest Approach to Auto-Tuning Hadoop’s Configuration. IEEE
Transactions on Parallel and Distributed Systems 27, 5 (May 2016), 1470–1483.
https://doi.org/10.1109/TPDS.2015.2449299

[5] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. 2009. Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural
Networks 20, 3 (2009), 542–542.

[6] Ray S Chen and Jeffrey K Hollingsworth. 2015. Angel: A hierarchical approach
to multi-objective online auto-tuning. In Proceedings of the 5th International
Workshop on Runtime and Operating Systems for Supercomputers. ACM, 4.

[7] Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier
Temam, and ChengyongWu. 2010. Evaluating Iterative Optimization Across 1000
Datasets. In Proceedings of the 31st ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA,
448–459. https://doi.org/10.1145/1806596.1806647

[8] I-H Chung and Jeffrey K Hollingsworth. 2006. A case study using automatic
performance tuning for large-scale scientific programs. In High Performance
Distributed Computing, 2006 15th IEEE International Symposium on. IEEE, 45–56.

[9] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. 2002. Active Har-
mony: Towards Automated Performance Tuning. In Proceedings of the 2002
ACM/IEEE Conference on Supercomputing (SC ’02). IEEE Computer Society Press.

[10] Dmitry Duplyakin, Jed Brown, and Robert Ricci. 2016. Active Learning in Per-
formance Analysis. In Cluster Computing (CLUSTER), 2016 IEEE International
Conference on. IEEE, 182–191.

[11] Thomas L Falch and Anne C Elster. 2017. Machine learning-based auto-tuning
for enhanced performance portability of OpenCL applications. Concurrency and
Computation: Practice and Experience 29, 8 (2017).

[12] R.D. Falgout, J.E. Jones, and U.M. Yang. 2006. The Design and Implementation
of hypre, a Library of Parallel High Performance Preconditioners. In Numerical
Solution of Partial Differential Equations on Parallel Computers, A.M. Bruaset and
A. Tveito (Eds.). Vol. 51. Springer-Verlag, 267–294.

[13] Archana Ganapathi, Kaushik Datta, Armando Fox, and David Patterson. 2009. A
case for machine learning to optimize multicore performance. In Proceedings of
the First USENIX conference on Hot topics in parallelism. USENIX Association.

[14] Michael Gerndt and Michael Ott. 2010. Automatic performance analysis with
periscope. Concurrency and Computation: Practice and Experience 22, 6 (2010).

[15] Alexander Grebhahn, Norbert Siegmund, Harald Köstler, and Sven Apel. 2016.
Performance prediction of multigrid-solver configurations. In Software for Exas-
cale Computing. Springer, 69–88.

[16] Philipp Gschwandtner, Juan José Durillo, and Thomas Fahringer. 2014. Multi-
Objective Auto-Tuning with Insieme: Optimization and Trade-Off Analysis for
Time, Energy and Resource Usage.. In Euro-Par. 87–98.

[17] R D Hornung and J A Keasler. 2014. The RAJA Portability Layer: Overview
and Status. Technical Report LLNL-TR-661403. Lawrence Livermore National
Laboratory.

[18] Nikhil Jain, Eric Bohm, Eric Mikida, Subhasish Mandal, Minjung Kim, Prateek
Jindal, Qi Li, Sohrab Ismail-Beigi, Glenn Martyna, and Laxmikant Kale. 2016.
OpenAtom: Scalable Ab-Initio Molecular Dynamics with Diverse Capabilities. In
International Supercomputing Conference (ISC HPC ’16).

[19] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay
Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling
of configurable systems: An exploratory analysis. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering. IEEE
Press, 497–508.

[20] Thorsten Joachims. 2003. Transductive learning via spectral graph partitioning. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03).

[21] AJ Kunen, TS Bailey, and PN Brown. 2015. KRIPKE-Amassively parallel transport
mini-app. Lawrence Livermore National Laboratory (LLNL), Livermore, CA, Tech.
Rep (2015).

[22] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang
Gerlach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and
Somali Chaterji. 2017. Rafiki: A Middleware for Parameter Tuning of NoSQL
Datastores for Dynamic Metagenomics Workloads. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference (Middleware ’17). ACM, New York, NY,
USA, 28–40. https://doi.org/10.1145/3135974.3135991

[23] Aniruddha Marathe, Rushil Anirudh, Nikhil Jain, Abhinav Bhatele, Jayaraman
Thiagarajan, Bhavya Kailkhura, Jae-Seung Yeom, Barry Rountree, and Todd
Gamblin. 2017. Performance Modeling under Resource Constraints Using Deep
Transfer Learning. In Proceedings of the ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC ’17). IEEE
Computer Society. LLNL-CONF-736726.

[24] Saurav Muralidharan, Manu Shantharam, Mary Hall, Michael Garland, and Bryan
Catanzaro. 2014. Nitro: A framework for adaptive code variant tuning. In Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International. IEEE.

[25] William F Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. 2017.
Minimizing the cost of iterative compilation with active learning. In Proceedings
of the 2017 International Symposium on Code Generation and Optimization. IEEE
Press, 245–256.

[26] Amit Roy, Prasanna Balaprakash, Paul D Hovland, and Stefan M Wild. 2016.
Exploiting performance portability in search algorithms for autotuning. In Parallel
and Distributed Processing Symposium Workshops, 2016 IEEE International. IEEE.

[27] Burr Settles. 2012. Active learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning 6, 1 (2012), 1–114.

[28] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K
Hollingsworth. 2009. A scalable auto-tuning framework for compiler optimiza-
tion. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International
Symposium on. IEEE, 1–12.

[29] Ananta Tiwari and Jeffrey K Hollingsworth. 2011. Online adaptive code gener-
ation and tuning. In Parallel & Distributed Processing Symposium (IPDPS), 2011
IEEE International. IEEE, 879–892.

[30] Yuto Yamaguchi, Christos Faloutsos, and Hiroyuki Kitagawa. 2016. Camlp:
Confidence-aware modulated label propagation. In Proceedings of the 2016 SIAM
International Conference on Data Mining. SIAM, 513–521.

[31] Huazhe Zhang and Henry Hoffmann. 2016. Maximizing Performance Under
a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques.
SIGPLAN Not. 51, 4 (2016), 545–559.

ACKNOWLEDGMENTS
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344 (LLNL-CONF-750296).

11

https://doi.org/10.1109/TPDS.2015.2449299
https://doi.org/10.1145/1806596.1806647
https://doi.org/10.1145/3135974.3135991

	Abstract
	1 Introduction
	2 Related Work
	3 Bootstrapping with GEIST
	3.1 Performance Tuning as Adaptive Sampling
	3.2 Modeling Parameter Spaces using Graphs
	3.3 Reformulating Performance Prediction
	3.4 Semi-Supervised Label Propagation
	3.5 GEIST Algorithm
	3.6 Success Metrics

	4 Evaluation Setup and Datasets
	4.1 Benchmarks and Parameter Sources
	4.2 Distribution of Observed Performance
	4.3 Evaluation Methodology
	4.4 Competing Methods

	5 Evaluation
	5.1 Compiler Flags for LULESH
	5.2 Decomposition Selection for OpenAtom
	5.3 Solver Selection for Hypre
	5.4 Kripke: Time and Energy Optimization
	5.5 Selecting RAJA policies

	6 Discussion and Conclusion
	References
	Acknowledgments

