
Overcoming the Scalability Challenges of Epidemic Simulations on Blue Waters

Jae-Seung Yeom1,2, Abhinav Bhatele3, Keith Bisset2, Eric Bohm4, Abhishek Gupta4, Laxmikant V. Kale4,

Madhav Marathe1,2, Dimitrios S. Nikolopoulos5, Martin Schulz3, Lukasz Wesolowski4

1Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
2Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061 USA

3Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA 94551 USA
4Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA

5School of EEECS, Queen’s University of Belfast, Belfast, Northern Ireland BT9 5BN UK

Email: 2{jyeom, kbisset, mmarathe}@vbi.vt.edu, 3{bhatele, schulzm}@llnl.gov
4{ebohm, gupta59, kale, wesolwsk}@illinois.edu, 5d.nikolopoulos@qub.ac.uk

Abstract—Modeling dynamical systems represents an impor-
tant application class covering a wide range of disciplines
including but not limited to biology, chemistry, finance, national
security, and health care. Such applications typically involve
large-scale, irregular graph processing, which makes them dif-
ficult to scale due to the evolutionary nature of their workload,
irregular communication and load imbalance. EpiSimdemics is
such an application simulating epidemic diffusion in extremely
large and realistic social contact networks. It implements a
graph-based system that captures dynamics among co-evolving
entities. This paper presents an implementation of EpiSim-
demics in Charm++ that enables future research by social, bio-
logical and computational scientists at unprecedented data and
system scales. We present new methods for application-specific
processing of graph data and demonstrate the effectiveness of
these methods on a Cray XE6, specifically NCSA’s Blue Waters
system.

Keywords-contagion simulations; scalability; performance;
graph processing; social contact networks

I. INTRODUCTION

With an increasingly urbanized and mobile population,

the likelihood of a worldwide pandemic is increasing. To

understand and combat such events, scientists require accurate

simulations that help them study how contagions spread

among the population of a state, country or, ultimately, the

entire planet. However, with rising input sizes and accuracy

requirements coupled with strict deadlines for simulation

results, e.g., for real-time planning during the outbreak of

an epidemic, simple computational approaches are no longer

sufficient. For example, the analysis necessary during the

2009 outbreak of the avian flu (H1N1) required simulation

turnaround times of under 24 hours for several weeks.

Therefore, we must expand the use of high performance

computing (HPC) approaches and, in particular, push the

boundaries of scalability for this application area.

EPISIMDEMICS is an agent-based simulation framework

for contagion simulation that can be used to model a wide

range of epidemic scenarios, as well as the impact of counter

measures [1]. It has been used in multiple sponsor requested

studies and for determining potential outcomes during the

early days of the H1N1 pandemic [2]. This integration into the

24-hour decision cycle of the federal government’s response

to such a crisis would not have been possible without the

development of highly optimized modeling software. The

analysts performed course-of-action analyses to estimate the

impact of closing schools and shutting down workplaces.

EPISIMDEMICS is implemented using the CHARM++

programming model [3] and has shown good scalability

up to modest cluster sizes of several hundred to a thousand

cores. When scaling to a larger number of cores, however,

EPISIMDEMICS faced severe scalability bottlenecks that

prohibited its use for large, time-sensitive problems.

In this paper, we analyze the source of these scalability

limitations and discuss a set of novel optimizations to

overcome them. We first focus on the impact of using graph

data with heavy-tailed degree distributions, which is common

in social network graphs. We show how such a property limits

scaling and how we transform graphs to achieve a better

load balance via graph partitioning.

We make the following specific contributions in this paper:

● We analyze the challenges in scaling a state-of-the-art

contagion simulation code, EPISIMDEMICS, and connect

them to the heavy-tailed properties of the input graph.

● We introduce a workload model that allows state-of-the-

art graph partitioners to use custom, application-specific

load balancing constraints for EPISIMDEMICS.

● We propose a technique to preprocess the input graph

to split heavy nodes, which enables graph partitioners

to produce a more balanced workload distribution.

● We implement and evaluate a series of communication

optimizations for irregular graph-processing applications,

including message aggregation.

● We demonstrate unprecedented strong scaling of a

contagion simulation on over 352K cores of Blue Waters

at National Center for Supercomputing Applications

(NCSA), one of the largest HPC systems in the world.

The fastest known simulation [4] reported a speedup of



10,000 on 64K cores (15.2% efficiency) on Cray XT5. Our

approach achieves a speedup of 14,357 (22% efficiency)

on the same number of cores on Cray XE6. Further, we

demonstrate that our implementation of EPISIMDEMICS can

scale up to 360,448 cores and achieve a speedup 58,649

(16.3% efficiency), more than a five-fold increase in the

number of cores with slightly improved efficiency.

II. EPISIMDEMICS

EPISIMDEMICS is a contagion diffusion simulation code,

which relies on several underlying base technologies. Here,

we describe the simulation algorithm and its implementation.

A. Contagion Simulation Structure

EPISIMDEMICS is an agent-based simulator that models

the spread of contagious disease over social contact networks.

It is based on a hybrid time-stepped, discrete-event simulation

(DES) approach. Its input is a bipartite graph consisting

of person and location nodes, with edges between them

representing a visit by a person to a specific location at a

specific time. This graph is a synthetic network based on

census and other data [5]. We call this the person-location

graph. It is a compact representation, with an average degree

of 5.5 for person nodes and 21.5 for location nodes.

Table I lists the population sizes of some representative US

states. Note that the graph can evolve over time as people’s

health state changes and interventions such as school closures

are applied. The person-location graph is used to implicitly

construct a person-person graph, whose edges represent the

colocation of two people in time and space and which

is ultimately used to determine any disease transmission

between colocated people.
Table I

POPULATION DATA OF VARIOUS SIZES BASED ON A 2009 AMERICAN

COMMUNITY SURVEY. US INCLUDES 48 CONTIGUOUS STATES AND DC.

data name visits people locations

US (United States) 1,541,367,574 280,397,680 71,705,723

CA (California) 183,858,275 33,588,339 7,178,611

NY (New York) 98,350,857 17,910,467 4,719,921

MI (Michigan) 52,534,554 9,541,140 2,490,068

NC (North Carolina) 47,130,620 8,541,564 2,289,167

IA (Iowa) 15,280,731 2,766,716 748,239

AR (Arkansas) 14,803,256 2,685,280 739,507

WY (Wyoming) 2,756,411 499,514 144,369

A person’s health state is tracked using a probabilistic

timed transition system (PTTS), a finite state machine with

the addition of a dwell time (the time a person will remain

in a state before automatically transitioning to the next

state) distribution for each state, and sets of probabilistic

transitions between states. Different sets of transitions are

used, depending on the treatment received by the person,

such as vaccination. EPISIMDEMICS has a domain-specific

language for specifying complex interventions and behavior,

such as vaccinations, school closures, and anxiety levels [6].

B. The EpiSimdemics Core Algorithm

We take advantage of the fact that most infectious diseases

have a latent period, the time between a person becoming

infected and being able to infect others. This lets us process

all of the interactions for a time step in parallel, without

affecting causality. The basic algorithm for each time step

(currently one simulation day) is:

1) In parallel, each person recalculates their health state and

decides on the locations to visit, based on their current

normative schedule, health state, and public policy such

as school closings. For each location visited, the object

representing the person sends a “visit” message to the

object representing the visited location with the ID of

the person, the start time and the end time of the visit,

as well as the person’s health state.

2) Synchronization to ensure all visit messages have been

received, as receivers have no prior knowledge of how

many messages to expect and from whom.

3) In parallel, each location constructs a sequential and local

DES by converting each visit message into an arrive

event and depart event. The DES is executed, computing

the interactions between each pair of susceptible and

infectious people who are at the location at the same time.

For each interaction that results in disease transmission,

an “infect” message is sent to the infected person.

4) Synchronization to ensure receipt of all infect messages.

5) In parallel, each person that received an infect message

updates its health state.

6) Global system state is updated (e.g., number of currently

infected people).

While this design requires two global synchronization

points for each iteration and therefore leads to a bulk-

synchronous model, EPISIMDEMICS typically only requires

the execution of a moderate number (120–180) of fairly long

simulation iterations on most inputs, representing three to

four months of simulated time. This helps mask the effects

of the bulk synchronous model on scalability.

C. Message-driven Design

EPISIMDEMICS is implemented in a parallel language

called CHARM++ [3], which is a C++-based parallel program-

ming model accompanied by a message-driven asynchronous

runtime. The underlying idea is to over-decompose the

computation in the application into smaller units called

chares, i.e., into significantly more units than available

physical processors, and to let the runtime then assign a

set of work units to each physical processor, which enables a

fine grained load balancing. Chares can either be data units,

work units, or both. However, implementations must choose

the right granularity of splitting work into chares to find the

right tradeoff. A large number of chares, each with little

work increases flexibility, but also results in higher overhead,

while a small number of larger chares minimizes overhead

but limits the ability to exploit over-decomposition.



P
�✁✶

P
�✁✷

P
�✁♥

▲
✂✁ ✶

▲
✂✁ ✷

▲
✂✁♠

�✄

�✄

✈☎✆☎✝

❛

❜

Figure 1. EPISIMDEMICS implemented in CHARM++

We follow a two-level hierarchical data distribution tech-

nique to find the right tradeoff, as shown in Figure 1. At the

first level, we create two types of chares, LocationManagers

(LM) and PersonManagers (PM), each able to manage

multiple second level objects representing individual locations

and persons, respectively. We then distribute the person and

location objects among the elements of the corresponding

chare arrays (LM and PM). The individual chares in both

arrays handle the computation and communication of all

location or person objects assigned to them. The CHARM++

runtime then maps the chare arrays (representing LMs and

PMs) to processes. As a consequence, different object to

manager and manager to processor mappings can result in

different communication patterns with potentially varying

degrees of efficiency.

III. SCALABILITY CHALLENGES WITH

SOCIAL NETWORK DATA

The input graphs to EPISIMDEMICS, which are derived

from real-world data [5], typically follow heavy-tailed degree

distributions. This is common for social network graphs [7].

This property has a profound impact on how to handle and

scale such data sets, as we show in the rest of the paper.

Heavy-tailed load distributions make load balancing diffi-

cult when partitioning. Furthermore, partitioning to optimize

locality of data by minimizing total edge cuts may often

only be achieved by sacrificing load balancing. Figure 2(a)

and (b) show the optimal partitioning in terms of load

balancing without considering edge cuts, and edge cuts

without considering load balancing, respectively. In this

example, the most heavily-loaded node (Node 1 with weight

8) has the most edges and balancing load requires cutting all

edges around this node in Figure 2(a). Partitioning focusing

on edge cuts, on the other hand, would lead to the distribution

in Figure 2(b) with an edge cut of 6 vs. 8 in Figure 2(a).

However, the ratio of the maximum load per partition to

the average is 1.67 in Figure 2(a) and 2.08 in Figure 2(b),

showing the advantage of the distribution in Figure 2(a).

Section III-B further discusses this problem and Section III-C

describes how we address the problem in EPISIMDEMICS

using an application-specific decomposition strategy.

A. A Model to Estimate Work Load

Load distribution is important to achieve high scalabil-

ity and performance. Existing graph partitioners, such as

METIS [8], allow users to specify the load balance constraint

� �

�

�

� �

��

	

�


��

��

��

����

��

��

��

(a) total 8 cuts, (b) total 6 cuts,

max load per partition = 8 max load per partition = 10

Figure 2. The optimal 5-way partitioning result for minimizing (a) load
imbalance and (b) edge cut. Node 1 has weight 8, and Nodes 7 and 9 have
weight 1 each.

in terms of the tolerable variance in the sum of vertex weights

per partition. This requires a model to estimate the workload

in our graphs so that we can assign a weight to each work

unit (vertex) before passing graphs to the partitioner. We use

METIS for our investigation as it supports multi-constrained

partitioning [8], allowing us to assign a vector of weights to

each vertex. Each element of the vector is associated with

a unique load balancing constraint for a specific phase of

the computation. We adopt this mechanism for partitioning

population data sets in bipartite graphs representing the dual-

phase computation discussed in Section II.

We observe that the amount of computation per person is

roughly proportional to the number of messages that each

person generates, which shows no significant variance (avg=

5.5, σ=2.6 for the US population data). Thus, we approximate

the load of a person vertex as the number of messages the

person generates. On the other hand, the computation per

location varies significantly and requires a more detailed

estimation. For this, we adopt a function approximation

approach rather than analytical modeling. We define load as

the relative processing time. We consider three application

state variables (number of arrival-departure events, sum of

interactions and sum of the reciprocal of interactions) for

the model input, rather than machine parameters. The latter

two are only available at run time.

Note that we distinguish between static load and dynamic

load. In EPISIMDEMICS, the amount of computation is not

deterministic. Two of the major sources of non-determinism

are health state changes and interventions, described in

Section II-A. We do not attempt to address the dynamic

load variation by static load balancing. Rather, we focus on

the statically predictable portion of the workload by using a

priori information such as the number of events.

We build a model that maps events to the static load of

the location as shown in Figure 3(a). Figure 3(c) shows the

distribution of in-degree per location which is the number of

unique visitors strongly correlated to the number of events.

Figure 3(d) shows the distribution of the load per location

estimated by the model. We use a piecewise linear regression

to approximate the non-linear dependence that exists between



✵ ✺ ✶✵ ✶✺

① ✶✵
✹

✵

✵�✵✺

✵�✶

❳

❨

P✁✂✄☎✆✝✂✄

❖✞✟✂✁✠✂✄

✲✡

✲☛

☞

✌ ✍☞
✼

✲✎
☞

✎
✍☞

✌ ✍☞
✻

☞

✍☞

☛☞

✸☞

✏☛✏✍

✑

✒✓
✔

✒✓
✷

✒✓
✕

✒✓
✖

✒✓
✔

✒✓
✷

✒✓
✕

✒✓
✖

✒✓
✽

❜✗✘ ✙✓✚✒✛✜ ✜✢

❈
✣
✤
✥
✦

✧★

◆✩

▼✪

◆✧

✪★

★❆

❲✩

✫✬
✭

✫✬
✮

✫✬
✯

✫✬
✰

✫✬
✭

✫✬
✮

✫✬
✯

✫✬
✰

✫✬
✱

✳✴✾ ✿✬❀✫❁❂ ❂❃

❄
❅
❇
❉
❊

(a) Static load model (b) Dynamic load model (c) Degree distribution (d) Static load distribution

Figure 3. The load estimation model estimates the load of each location work unit on Blue Waters based on the node degree.

the location computational load and events as follows:

X′ = µ⋅X
Ya = 6.09×10−6+7.72×10−7X′

Yb = −1.25×10−4+8.67×10−7X′

Y = Ya ⋅S(ϕ−X′)+Yb ⋅S(X
′−ϕ)

where X is the number of events, Y is the load and S(t) =

1/(1+ρ⋅e−t). ϕ is the cross over point between the two linear

models and determined experimentally. ρ is set to adjust the

smoothness of the transition from one model to another. In

practice, we build the model by measuring LocationManagers’

processing time due to the limited timer precision but apply it

to a location by scaling the input parameter with µ. Figure 3(a)

validates our model against runs on Blue Waters, where we

observe 5% error on average. The model shown in Figure 3(b)

relies on the aforementioned on-line information to estimate

dynamic load. Thus, it is not used for graph partitioning.

B. Applying Graph Partitioning to Social Network Graphs

Originally, we assign objects to Charm++ chares round-

robin (RR) to approximate static load balancing. However,

this is not optimal in terms of load balance and data

locality. EPISIMDEMICS also supports an interface to apply

external partitioning methods, such as METIS or other graph

partitioners, which we exploit in the following.

Throughout the rest of the paper, we label the base

cases with round-robin data distribution before and after

the decomposition discussed in Section III-C as RR and

RR-splitLoc, respectively. We label the cases using data

distribution based on graph partitioning before and after the

decomposition as GP and GP-splitLoc, respectively.

The distribution of work in the location computation phase,

shown in Figure 3(d), is highly skewed as some locations

have far more visitors than others. The objective of graph

partitioning here is to minimize the communication between

the computation phases subject to load balancing constraints

for both phases. However, when we apply graph partitioning

to our data, we observe significant variance in the load

distributed between partitions and violations of balancing

constraints. We investigate analytically and empirically how

this affects scaling in the rest of this section. We first show

how load balance is bounded by the granularity of work load.

Then, we analyze how this affects scaling.

As discussed before, our input data is represented as a

bipartite graph with persons and locations as nodes. Formally,

we define this graph as G=<Vφ,Vλ,E>, where Vφ is the set of

person type vertices, Vλ is the set of location type vertices, and

E is the set of edges. We begin our analysis with the following

assumptions for the simplicity of discussion focusing on the

location type vertices:

1) The number of location vertices (v∈Vλ) with degree d

follows a power-law distribution given by f=D⋅prob(d)=

D⋅c⋅d−β, where D is the location data size ∣Vλ∣, c is a

scaling constant such that c⋅∑
∞

1
d−β=1, and β>1 is the

power-law exponent.

2) The computational complexity of the work of a vertex

v∈Vλ is O(dv), where dv is the vertex degree.

3) The computational load lv of a vertex v∈Vλ is approxi-

mated by lv=α⋅dv+γ≈α⋅dv, where α is a model constant.

We denote the maximum of vertex loads max({lv ∣v∈Vλ}) by

lmax , the maximum of vertex degrees max({dv ∣v∈Vλ}) by dmax ,

and the average of vertex degrees by davg .

Suppose we have a K-way partition of Vλ, P={pi∣i=1,...,K},

where Vλ=p1∪...∪pK . We define the load of a partition p∈P as

Lp=∑v∈p lv ≈ α⋅∑v∈p dv. Ltot denotes the total sum of loads

in Vλ. We define the maximum load of partitions Lmax as

max(Lp) where p∈P , the most heavily loaded partition pmax as

argmaxp(Lp), and the estimated upper bound for the speedup

Sub as Ltot/Lmax . We consider this as the upper bound since

the effect of communication and the scaling of the person

phase are not taken into account. Sub is further bounded by

Ltot/lmax as lmax≤Lmax . Figure 4 shows Sub as a result of graph

partitioning. The general trend is that the larger the data, the

higher the Sub is. Although Figure 3(d) shows a similar load

distribution in log-scale between IA and AR, lmax of AR is

more than twice of that of IA, as shown in Table II.

Table II
THE TOTAL LOAD Ltot AND THE MAXIMUM LOAD PER LOCATION BEFORE

(lmax ) AND AFTER (ℓmax ) GRAPH MODIFICATION.

×10
3 CA NY MI NC IA AR WY

Ltot 545577 282940 151206 135180 43949 42319 7818

lmax 254.9 347.5 234.1 160.4 45.3 97.3 32.6

ℓmax 2.9 2.0 2.2 2.0 1.9 1.7 1.6

As Ltot/lmax=(α⋅∑v∈Vλ
dv)/(α⋅d

max ), log(Sub) ≲ log(davg
⋅D)−



 0

 500

 1000

 1500

 2000

 2500

10 102 103 104 105

U
p
p
e
r 

b
o
u
n
d
 o

n
 e

s
ti

m
a
te

d
 s

p
e
e
d
u
p

Number of partitions

GP

CA
NY
MI
NC
IA

AR
WY

Figure 4. The estimated speedup for location computation based on the
load distribution across data partitions. It is evaluated for each of seven
states over various number of partitions between 12 and 196,608. (GP)

log(dmax ). From the power-law relationship, it is likely only
one or very few vertices with dmax exist. By approximating
this value f as 1 for dmax , we obtain log(cD⋅(dmax )−β)=log(1),
and thus log(dmax )=log(cD)/β. This results in:

log(Sub/D) ≲ log (d
avg) −

1

β
⋅ log(D) −

1

β
⋅ log(c)

Note that log(davg)≪log(D). Unless we compare extremely

different sizes of D, davg is roughly the same, especially

when β≫2 and D is large. We observe that davg=14.35 and

σ=1.69 in our US population data. Figure 5(a) shows that the

scalability Sub/D is reduced as the data size increases. In

our population data, the peak load grows as the graph size

increases. Section III-C describes our decomposition strategy

to break the heavy-tailed structure in our graphs.

✶�
✺

✶�
✻

✶�
✼

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

❈✆
◆✝

▼✞

◆❈

✞✆

✆❆

❲✝

●✟

✠✡☛☞✌✍ ✎✏ ✑✎✒✓✔✕✎✖✗ ✘✙✚

✛
❛
①
✭❙
✉❜
❂
❉
✮

✜✢
✣

✜✢
✤

✜✢
✥

✜✢
✦✧

✜✢
✦★

✜✢
✦✩

✜✢
✦✪

✫✬

✯✰

✱✳

✯✫✳✬

✬✴

✵✰

✷✸✹✽✾✿❀❁❃❄❅

❇❊❋❍■❏ ❑▲ ❖❑P◗❘❚❑❯❱ ❳❨❩

❬
❭
❪
❫❴
❵❝
❞
❡
❢

(a) Before decomposition (b) After decomposition

Figure 5. The maximum of the estimated speedup per location (Sub/D)
over the various number of partitions between 12 and 98304. Each dot
represents one of 48 contiguous US states and DC.

C. Graph Preprocessing to Split Heavily-loaded Nodes

We develop a domain decomposition strategy to preprocess

a graph before applying an existing partitioning strategy, such

that the structure of the processed graph is closer to what the

partitioner is designed for. During preprocessing, we modify

the graph, taking advantage of unexploited extra parallelism

in the application to split the work units (vertices) with the

highest loads. For example, node 1 in Figure 2(a) can be split

into two: node 1 and node 14 shown in Figure 6. Ideally, the

split work units have no overlapping dependency between

them as in Figure 6(a). This not only splits the work load,

but also divides the communication, which helps reduce the

maximum of both load and degree of vertices. Depending

on the dependency pattern in the application, a split work

unit can either retain the entire set of edges as in Figure 6(b)

or require additional communication within the split pair.

❣ ❤

✐

❥

❦ ❧

♠♥

♦

❣♣

❣❣

❣❤

❣✐

❣❥
1 2

3

4

5 6

78

9

10

11

12

13

14

(a) Divide edges (b) Retain edges

Figure 6. Two methods to split a heavily loaded node depending on
available extra parallelism

In EPISIMDEMICS, the interaction between people defines

the dependence. People only interact when they are present in

the same sublocation. This allows us to split locations without

adding extra communication edges as shown in Figure 6(a).

We split a heavy location into multiple locations, each of

which contains an exclusive subset of sublocations of the

original location. Heavy locations are split, instead of being

distributed by sublocation to keep the size of the graph

minimal for scalability and partitioning efficiency, and to

efficiently maintain shared data. In the future, we plan to

model inter-sublocation mixing within a location, such as

elevators and hallways, as in Figure 6(b). Even in such a

case, we can split the load by dividing the susceptibles while

replicating the infectious in a redundant sublocation.

To determine how heavy a location is, we rely on a

platform-independent approximation instead of the platform-

dependent load model defined for and used in graph par-

titioning in Section III-A and III-B. This approximation is

used to split locations in order to bound the location load.

We first define a weight for each sublocation type. Then,

we add up the sublocation weights in the location. The

sublocation weight is defined as the average number of visits

to the sublocation. As we are interested in the heaviest

locations, we determine the sublocation weight based on

the largest locations from each state in terms of the number

of sublocations. Then, we divide locations heavier than a

threshold as evenly as possible. We determine the threshold

based on the total load in the graph, the maximum number

of partitions to use, and the largest weight of a sublocation.

As a result, the distribution of degree and load in the

original graph shown in Figure 3(c) and (d) become the ones

shown in Figure 7(a) and (b), respectively. The upper-bounds

on the estimated speedup shown in Figure 4 improve to

the ones in Figure 8. Ltot/lmax increases by a factor of, on

average 89 (maximum 290, minimum 11) over 48 contiguous

states and DC. Figure 5(b) shows the resultant improvement

on Sub/D. The modification reduces dmax by a factor of, on



average, 54 (maximum 341, minimum 12), while increasing

D by at most 5.25%.

✶�
✵

✶�
✷

✶�
✹

✶�
✻

✶�
✵

✶�
✷

✶�
✹

✶�
✻

✶�
✽

❜✁✂ ✄�☎✶✆✝ ✝✞

❈
✟
✠
✡
☛

☞✌

◆✍

▼✎

◆☞

✎✌

✌❆

❲✍

✏✑
✒

✏✑
✓

✏✑
✔

✏✑
✕

✏✑
✒

✏✑
✓

✏✑
✔

✏✑
✕

✏✑
✖

✗✘✙ ✚✑✛✏✜✢ ✢✣

✤
✥
✦
✧
★

(a) Degree distribution (b) Static load distribution

Figure 7. Degree distribution and load distribution after graph modification.
(GP-splitLoc)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

10 102 103 104 105

U
p
p
e
r 

b
o
u
n
d
 o

n
 e

s
ti

m
a
te

d
 s

p
e
e
d
u
p

Number of partitions

GP-splitLoc

CA
NY
MI
NC
IA

AR
WY

Figure 8. The estimated speedup evaluated identically as in Figure 4 after
application-specific decomposition. (GP-splitLoc)

IV. COMMUNICATION OPTIMIZATIONS

In addition to our algorithmic optimizations and data

locality improvements through our new graph preprocess-

ing scheme, we also extensively optimize EPISIMDEMICS

compared to its first implementation in CHARM++, including

memory footprint and conditional branch reduction. Most

importantly, we optimize the communication performance

by exploiting hierarchical multi-core nodes, using advanced

completion detection to speed up synchronization, and

reducing buffering overhead and message size, all described

in the following subsections. Combined, these optimizations

provide an additional 40% reduction in execution time, shown

as the difference between RR no-opt and RR in Figure 12.

We rely on the optimized version to study the impact of

social network input data on scalability.

A. Charm++ SMP Mode

We leverage CHARM++’s SMP machine layer [9], which

instead of creating one OS process per core of an n core

node, the runtime creates k OS processes per node, such

that k<n and n/k is an integer. This allows chares within a

process to leverage more efficient intra-node communication

via shared memory for the following benefits: (i) inter-thread

communication can be implemented with direct memory copy,

(ii) the communication thread minimizes the interference

between application compute functions and communication,

(iii) sharing of read-only data across all threads reduces

memory consumption. To enable this mode, Charm++ spawns

a separate communication thread in each of the k OS

processes in addition to the n/k−1 compute threads and

then maps each thread to a separate core. The disadvantage

of this approach is that it reduces the number of compute

threads per node, since k cores are used as communication

threads. However, the communication intensive nature of

EPISIMDEMICS significantly benefits from the availability

of a dedicated communication thread to offload messaging,

leading to an overall increase in performance.

B. Completion Detection Synchronization

As discussed in Section II, there is a need for global

synchronization at the end of each phase of the simulation.

After each person has sent its visit messages to locations, a

global barrier must be enforced before locations can start

computing infections. However, since the individual location

chares have no prior knowledge of how many messages to

receive and from whom, a simple barrier is not adequate.

Instead, we need a mechanism to detect the condition when

there are no messages awaiting processing or in transit.

For this purpose, CHARM++ provides a Quiescence De-

tection (QD) feature, which detects the global quiescence

condition [10]. However, this approach requires global

quiescence across the entire application. Since, in the future,

we will use EPISIMDEMICS to perform multiple simulations

simultaneously, using dynamic replication of state (chare

arrays), we require an approach that enables us to perform

synchronization local to a module.

We therefore rely on a novel Completion Detection

(CD) [10] mechanism which can be applied to subsets of

chares as long as the number of candidate producers is known

apriori, which is given in our case. Completion is detected

when the participating objects have produced and consumed

an equal number of messages globally.

C. Message Aggregation

Prior versions of EPISIMDEMICS have shown that message

aggregation is crucial to achieve good performance, even with

a primitive flushing approach. However, this becomes ineffec-

tive when buffering space is exhausted or a receiver cannot

keep up with an enormous volume of inbound messages. In

this new version of EPISIMDEMICS, we expand on this and

provide a novel built-in message aggregation mechanism to

cope with such challenges efficiently1. It is used in PMs

when sending visit messages to LMs, since this can lead to

1Note that the CHARM++ team is currently working on TRAM (Topo-
logical Routing and Aggregation Module), which implements an application
agnostic message aggregation in the runtime—however, this module was
not available prior to the generation of most of the results presented here,
and we are not yet able to determine to what degree it can replace our
application-aware strategy.







 0.01

 0.1

 1

 10

 100

 1000

1 16 64 256 1K 4K 16K 128K

S
im

u
la

ti
o
n

 t
im

e
 p

e
r 

d
a
y
 (

s
)

Number of core-modules

California (CA)
RR
GP

RR-splitLoc
GP-splitLoc

 0.01

 0.1

 1

 10

 100

 1000

1 16 64 256 1K 4K 16K 128K

S
im

u
la

ti
o
n

 t
im

e
 p

e
r 

d
a
y
 (

s
)

Number of core-modules

Michigan (MI)
RR
GP

RR-splitLoc
GP-splitLoc

 0.01

 0.1

 1

 10

 100

 1000

1 16 64 256 1K 4K 16K 128K

S
im

u
la

ti
o
n

 t
im

e
 p

e
r 

d
a
y
 (

s
)

Number of core-modules

Iowa (IA)
RR
GP

RR-splitLoc
GP-splitLoc

 0.01

 0.1

 1

 10

 100

 1000

1 16 64 256 1K 4K 16K 128K

S
im

u
la

ti
o
n

 t
im

e
 p

e
r 

d
a
y
 (

s
)

Number of core-modules

Arkansas (AR)
RR
GP

RR-splitLoc
GP-splitLoc

Figure 13. Strong scaling performance of EPISIMDEMICS for selected states on Blue Waters

✶�
✁

✶�
✷

✶�
✸

✶�
✹

✶�
✺

✶�
✵

✶�
✷

✶�
✹

✶�
✻

✶�
✽

◆✂✄☎✆✝ ✞✟ ✠✡✝☛☞☛☞✞✌✍

▼
✎
✏
✑
✒
✓✔
✑
✎
✓✕
✖✕
✖✗
✘
✒
✙
✚
✒
✛
✜
✕

❈✢

✣✤

✤✢

❲✥

✦✧
★

✦✧
✩

✦✧
✪

✦✧
✫

✦✧
✬

✦✧
✭

✦✧
✩

✦✧
✫

✦✧
✮

✦✧
✯

✰✱✲✳✴✼ ✾✿ ❀❁✼❂❃❂❃✾❄❅

❆
❇
❉
❊
❋
●❍
❊
❇
●■
❏■
❏❑
▲
❋
❖
P
❋
◗
❘
■

❙❚

❙❯

❱❳

Figure 14. The maximum per-partition
edge cut (GP-splitLoc).

as the number of total edges divided by the number of

partitions hypothetically imagining that all edges are cut.

With WY, the maximum per-partition edge cut is 19 times

larger than the all-remote-communication case with 98,304

data partitions. On the other hand, with NY data, the ratio

is 2.7. The average ratio across all seven states is 7.83.

VI. RELATED WORK

Among many agent-based epidemiological platforms are

those developed by Eubank et al. [11], Longini et al. [12],

Ferguson et al. [13], and Parker et al. [14]. The system

described in [13] is implemented for shared memory plat-

forms and, thus, is limited by the amount of available

shared memory. The works in [12] and [14] either use

structured social contact networks that are more amenable to

efficient parallel computation, but which, arguably, are less

representative of real-world social networks, or lack the rich

set of interventions required to accurately model real-world

responses to pandemics. In any case, none of these have

been shown to scale to more than a thousand or so cores.

The work by Permualla et al. [4] has the best scaling of

any individual level Epidemiology simulation known to the

authors, and is based on previous EPISIMDEMICS work [1].

The system uses the same disease model and transmission

function, but is based on a hierarchical social network

construction similar to [12], a population of homogeneous

agents, and lacks the ability to model interventions.

Traditional graph partitioning tools primarily focus on

minimizing total edge cuts while enforcing load balance as a

constraint rather than an optimization target [8, 15, 16]. Such

partitioning methods have been most successful in areas as

mesh-based PDE simulation, VLSI layout design, and sparse

matrix decomposition [16, 17]. Although minimizing the total

edge cuts limits the maximum edge cuts per partition, these

tools do not balance edge cuts across partitions, which is

also important for minimizing communication cost.

Partitioning extremely large, highly irregular data is left

as an open problem. Abou-Rjeili et al. [18] propose a new

clustering-based coarsening scheme for power-law graphs,

which identifies and collapses groups of vertices that are

highly connected. The method described in [19] divides the

vertices of a graph into k almost equal groups such that the

sum of the weight of the edges connecting vertices in different

partitions is minimized. Pearce et al. [20] evenly divide

sorted edge lists to reduce communication hotspots while

accommodating high degree vertices over multiple partitions

using ghosts. Our approach is different from these as we

enhance application-specific load balancing with locality

optimization. We split nodes with heavy computation and

then utilize graph partitioning for locality optimization.

VII. FUTURE WORK

The work load in EPISIMDEMICS contains both deter-

ministic and non-deterministic portions. We focus on the

former in this paper, and are currently investigating the latter.

CHARM++ runtime offers measurement-based load balancing

(LB) framework based on the principle of persistence. Since

our application can have highly dynamic computation, this

is not sufficient. Our plan is to address the dynamism by the

application-specific prediction of work load. The goal is to

avoid incurring excessive overhead by initiating LB phases

without a sufficient gain in performance as in [21], but by

using application-specific information.



VIII. CONCLUSIONS

Contagion simulations play an important role in under-

standing and combating epidemics. The need to model

national and multinational regions with increasing accuracy,

while adhering to strict deadlines, requires large computing

resources. The extreme irregularity in the underlying graph

data makes scaling contagion simulations challenging. In this

work, we presented advances in a large contagion simulation

framework, EPISIMDEMICS, that allowed us to significantly

improve the performance and scalability of this application.

Many advancements were made in order to achieve this

result, taking advantage of application semantics at both

the algorithmic and implementation level. These include

domain decomposition and effective partitioning of the

person-location graph to minimize the impact of the heavy-

tailed load distribution of the graph data, and communication

optimizations through message aggregation, efficient symmet-

ric multiprocessing (SMP) and optimized synchronization.

As a result of these optimizations, we have shown unprece-

dented scaling of an individual-based contagion diffusion

model, scaling to over 352K cores on Cray XE6, a five-fold

increase over the previous state of the art on Cray XT5 while

still increasing parallel efficiency compared to the largest

prior run at 64K cores. The improved turn around times will

have a positive impact on the ability of policy makers to

respond to emerging pandemics in the future.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory under Contract DE-

AC52-07NA27344 (LLNL-CONF-648533). This work has been partially

supported by NSF Grants PetaApps OCI-0904844 and NetSE CNS-1011769,

DTRA Grant HDTRA1-11-1-0016, DTRA CNIMS Contract HDTRA1-11-

D-0016-0001, and NIH MIDAS Grant 2U01GM070694-09.

This research is part of the Blue Waters sustained-petascale computing

project, which is supported by NSF award number OCI 07-25070 and the

state of Illinois. Blue Waters is a joint effort of the University of Illinois and

NCSA. This work is also part of the Contagion PRAC allocation support

by NSF award number OCI-0832603.

REFERENCES

[1] C. Barrett, K. Bisset, S. Eubank, X. Feng, and M. Marathe,
“EpiSimdemics: an Efficient Algorithm for Simulating the
Spread of Infectious Disease over Large Realistic Social
Networks,” in Proc. of 2008 ACM/IEEE conference on
Supercomputing, 2008.

[2] NDSSL, “Case studies,” http://ndssl.vbi.vt.edu/sc13/CaseStudies.

html.
[3] L. Kalé and S. Krishnan, “CHARM++: A Portable Concur-

rent Object Oriented System Based on C++,” in Proc. of
OOPSLA’93, Sept. 1993, pp. 91–108.

[4] K. S. Perumalla and S. K. Seal, “Discrete event modeling and
massively parallel execution of epidemic outbreak phenomena,”
Simulation, vol. 88, no. 7, pp. 768–783, Jul. 2012.

[5] Christopher L. Barrett et al., “Generation and analysis of large
synthetic social contact networks,” in Proc. of 2009 Winter
Simulation Conference, Dec. 2009.

[6] K. Bisset, X. Feng, M. Marathe, and S. Yardi, “Modeling
interaction between individuals, social networks and public
policy to support public health epidemiology,” in Proc. of
2009 Winter Simulation Conference, Dec. 2009.

[7] Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong, “Analysis
of topological characteristics of huge online social networking
services,” in Proc. of 16th international conference on World
Wide Web, ser. WWW ’07, 2007, pp. 835–844.

[8] G. Karypis and V. Kumar, “Multilevel Algorithms for Multi-
Constraint Graph Partitioning,” in ACM/IEEE Conference on
Supercomputing, 1998, pp. 1–13.

[9] C. Mei, Y. Sun, G. Zheng, E. J. Bohm, L. V. Kalé, J. C.Phillips,
and C. Harrison, “Enabling and scaling biomolecular simu-
lations of 100 million atoms on petascale machines with a
multicore-optimized message-driven runtime,” in Proc. of 2011
ACM/IEEE conference on Supercomputing, Nov. 2011.

[10] The Charm++ Programming Language Manual, (Version
6.4.0), Parallel Programming Laboratory, Dept. of Computer
Science, Univ. of Illinois, Urbana, IL, 2012.

[11] S. Eubank, H. Guclu, A. Vullikanti, M. V. Marathe, A. Srini-
vasan, Z. Toroczkai, and N. Wang, “Modelling disease
outbreaks in realistic urban social networks,” Nature, vol.
429, no. 6988, pp. 180–184, May 2004.

[12] I. M. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Han-
shaoworakul, D. A. Cummings, and E. M. Halloran, “Con-
taining pandemic influenza at the source,” Science, vol. 309,
no. 5737, pp. 1083–1087, August 2005.

[13] N. M. Ferguson, M. J. Keeling, W. J. Edmunds, R. Gant,
B. T. Grenfell, R. M. Amderson, and S. Leach, “Planning for
smallpox outbreaks,” Nature, vol. 425, no. 6959, pp. 681–685,
2003.

[14] J. Parker and J. M. Epstein, “A distributed platform for
global-scale agent-based models of disease transmission,” ACM
Transactions on Modeling and Computer Simulation, vol. 22,
no. 1, Dec. 2011.

[15] F. Pellegrini and J. Roman, “Scotch: A software package for
static mapping by dual recursive bipartitioning of process
and architecture graphs,” in Proc. of Intl. Conference and
Exhibition on High-Performance Computing and Networking.
Springer-Verlag, 1996, pp. 493–498.

[16] Ümit V. Çatalyürek and C. Aykanat, “Hypergraph-partitioning
based decomposition for parallel sparse-matrix vector multipli-
cation,” IEEE Trans. on Parallel and Distributed Computing,
vol. 10, pp. 673–693.

[17] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multi-
level hypergraph partitioning: applications in VLSI domain,”
Very Large Scale Integration (VLSI) Systems, IEEE Trans. on,
vol. 7, no. 1, pp. 69 –79, Mar. 1999.

[18] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for
partitioning power-law graphs,” in IEEE Intl. Parallel and
Distributed Processing Symposium, 2006.

[19] S. Lin and X. Cheng, “Bc-ga: A graph partitioning algorithm
for parallel simulation of internet applications,” 16th Euromi-
cro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008), vol. 0, pp. 358–365, 2008.

[20] R. A. Pearce, M. Gokhale, and N. M. Amato, “Scaling tech-
niques for massive scale-free graphs in distributed (external)
memory,” in IEEE Intl. Parallel and Distributed Processing
Symposium, 2013.

[21] H. Menon, N. Jain, G. Zheng, and L. V. Kalé, “Automated
Load Balancing Invocation based on Application Characteris-
tics,” in IEEE Cluster 12, September 2012.


