High Performance Computing Systems (CMSC714)

Lecture 10: Fat-tree and Dragonfly Networks

Abhinav Bhatele, Department of Computer Science

Summary of last lecture

- Key requirements of HPC networks
 - extremely low latency, high bandwidth, scalable
 - low network diameter, high bisection bandwidth
- Torus networks (less common now)
 - Network diameter grows as $O(\sqrt[3]{N})$ where N is the number of nodes
- Different types of routing algorithms:
 - Shortest path vs. non-minimal
 - Static vs. dynamic

Most popular network topology

• Low network diameter, high bandwidth

// // //	/	

Most popular network topology

• Low network diameter, high bandwidth

// // //	/	

Most popular network topology

• Low network diameter, high bandwidth

Most popular network topology

• Low network diameter, high bandwidth

Router/switch radix = number of ports = k

Most popular network topology

• Low network diameter, high bandwidth

Most popular network topology

• Low network diameter, high bandwidth

Most popular network topology

• Low network diameter, high bandwidth

Most popular network topology

• Low network diameter, high bandwidth

Most popular network topology

• Low network diameter, high bandwidth

Most popular network topology

• Low network diameter, high bandwidth

Fat-tree networks on the top500 list

Infiniband EDR/FDR

Intel Omni-Path

Abhinav Bhatele, CMSC714

Interconnect System Share

https://www.top500.org/statistics/list/

Routing on a fat-tree

- Until recently, most fat-tree installations used static routing
 - Destination-mod-k (D-mod-k) routing
- Adaptive routing is now starting to be used

Abhinav Bhatele, CMSC714

Single-rail single-plane fat-tree (tapered)

Abhinav Bhatele, CMSC714

Abhinav Bhatele, CMSC714

Dual-rail single-plane fat-tree

Abhinav Bhatele, CMSC714

Single-rail single-plane fat-tree

Abhinav Bhatele, CMSC714

Dual-rail dual-plane fat-tree

Dragonfly network

IBM PERCS network

All-to-all connections within each grou

One supernode in the PERCS topology

IP			

IBM PERCS network

All-to-all connections within each group

One supernode in the PERCS topology

Cray Aries network

• Row and column all-to-all connections within each group

Aries Router

Cray Aries network

Row and column all-to-all connections within each group

Cray Aries network

Row and column all-to-all connections within each group

٠	٠	

٠	

Network comparisons

	Network topology	#nodes/router	#links/router	Maximum system size (#nodes)
	All-to-all (A2A) dragonfly	k/4	k/2 (L), k/4 (G)	$(k/2+1)^2 \times (k/4+1) \times k/4$
allel Simulation	Row-column (RC) dragonfly	SIGSINA/BADS '1	19,2k/Be(L),5k201GC	hica(g ,3,4, ψ) Ax $(k/6+1) \times k/6$
	Express mesh (3D, gap=1)	k/4	3k/4	$(k/4+1)^3 \times k/4$
	Fat-tree (three-level)	k/2	k/2	$k/2 \times k/2 \times k$

Abhinav Bhatele, CMSC714

Questions

Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing

- switch?
- The paper says the capacities of the channels of a universal fat-tree grow my view. So how can we manage the costs of building a fat-tree network?
- How does fat tree compare with the dragonfly network? Under what kind of circumstance, we prefer one to another?

How do you use a partial concentrator graph to construct a good concentrator

exponentially as we go up the tree from the leaves. If so, we must have a large number of wires for the top layers in a big fat tree, which may lead to higher costs in

Questions

Technology-Driven, Highly-Scalable Dragonfly Topology

- delayed by td(O) min [td(o)]". Where does the little o come from?
- nowadays?

• It's said in figure 6(b), the effective radix is 32, which I understand as a=8, p=2, h=2 and k'=a(p+h)=32. But it says the radix of each router k=7, which I don't get it. According to the formula, k should be a+p+h-l=11. So why does it say k=7 here?

• In the part introducing the credit round-trip latency technique, it says "the credit is

• Is there any hardware technology that supports advanced congestion look ahead

UNIVERSITY OF MARYLAND

Questions?

Abhinav Bhatele 5218 Brendan Iribe Center (IRB) / College Park, MD 20742 phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu