High Performance Computing Systems (CMSC714)

Lecture 11: Measurement Tools

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND



Summary of last lecture

® Scalable networks: fat-tree, dragonfly

® Use high-radix routers

* Many nodes connected to each switch

® | ow network diameter, high bisection bandwidth

® Dynamic routing

S DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714



Performance analysis

® Parallel performance of a program might not be what we expect
® How do we find performance bottlenecks!?
® Jwo parts to performance analysis: measurement and analysis/visualization

® Simplest tool: timers in the code and printf

SAER* DEPARTMENT OF :
18”745”,@56 COMPUTER SCIENCE Abhinav Bhatele, CMSC714



Performance Tools

® T[racing tools

* Capture entire execution trace

* Vampir, Score-P

® Profiling tools

o Typically use statistical sampling

* Gprof

® Many tools can do both

e TAU, HPCToolkit, Projections

SAER* DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714



Metrics recorded

e Counts of function invocations
® [ime spent in code

® Hardware counters

SAER> DEPARTMENT OF :
“ 4%5 COMPUTER SCIENCE Abhinav Bhatele, CMSC714



18

Calling contexts, trees, and graphs

e (Calling context or call path: Sequence of function
invocations leading to the current sample

e (Calling context tree: dynamic prefix tree of all call paths in psin2
an execution

e (Call graph: keep caller-callee relationships as arcs

SAE:* DEPARTMENT OF .
W) COMPUTER SCIENCE Abhinav Bhatele, CMSC7 | 4

2,

Ry1LM




Output

® Flat profile: Listing of all functions with counts and execution
times

e Call graph profile

e (Calling context tree

@@ D o e A ENCE Abhinav Bhatele, CMSC7 14 7
«1R‘;LP§Q



Questions

gprof: A Call Graph Execution Profiler

® Execution count: It is highlighted to be two types of counts, which is either an actual count or a boolean.
What'’s the benefit of introducing the second type!

® |t seems that the call to monitoring routine is more informative but slower compared to the inline counter
increment. Will the slow down actually affect the accuracy of the monitoring? Also is this trade-off generally
worth it (in terms of profiling)?

® |t is not immediately clear from the paper how they actually derive the timing approximation from the
histogram. If possible I'd like to see if there’s an illustrating example.

® |s there any principled way to extract static call graph from a generic program!?

® What are the different types of call graphs? How is each type best used for understanding program
performance!

® How much memory does profiling data require usually? Related: how does gprof balance various overheads?

® How does timeslicing work on timeshare machines!?

QERSIT
e&
Q

=% DEPARTMENT OF :
88 COMPUTER SCIENCE Abhinav Bhatele, CMSC714 8



Questions

Binary Analysis for Measurement and Attribution of Program Performance

The paper states “dynamic instrumentation remains susceptible to systematic
measurement error because of instrumentation overhead”.VWhere do these overheads
come from comparing to static and binary instrumentation?

The loop optimization performed by compiler introduces semantic gap between source
code and binary. Is there any effort on incorporating compiler into the profiling system
to reduce such gap!

It seems from the paper that the proposed HPCToolkit is better than gprof. How do
they compare practically when used to profile a program!?

How does highly optimized code make it harder to accurately profile? How does binary
analysis address these issues?

What are the measurement techniques for instrumentation!?

SUr
S * DEPARTMENT OF

18

Ry1LM

Y; COMPUTER SCIENCE Abhinav Bhatele, CMSC714



Questions?

48
\h B

)

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu



