
Lecture 13: Isoefficiency and Perf. Modeling
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)



Abhinav Bhatele, CMSC714

Summary of last lecture

• MPI trace visualization

• Projections performance analysis tool

• Hatchet: programmable by the user

2



Abhinav Bhatele, CMSC714

Isoefficiency

• Relationship between problem size and number of processors to maintain a certain 
level of efficiency

• At what rate should we increase problem size with respect to number of processors 
to keep efficiency constant

3



Abhinav Bhatele, CMSC714

Speedup and efficiency

• Speedup: Ratio of execution time on one process to that on n processes

• Efficiency: Speedup per process

4

Speedup =
t1
tn

Efficiency =
t1

tn × n



Abhinav Bhatele, CMSC714

Efficiency in terms of overhead

• Total time = (useful) computation + overhead (communication + idle time)

5

n × tn = t1 + to

Efficiency =
t1

tn × n
=

t1
t1 + to

=
1

1 + to
t1



Abhinav Bhatele, CMSC714

Isoefficiency function

• Sequential time = Problem size (number of operations) X time to do each operation

• Efficiency is constant if to / W is constant

6

t1 = W × tc

Efficiency =
1

1 + to
W × tc

W = K × to



Abhinav Bhatele, CMSC714

Performance Modeling

• Model the performance of a parallel application

• Different methods

• Analytical

• Empirical

• Simulation

7



Abhinav Bhatele, CMSC714

LogP model

• Model for communication on an interconnection network

8

the assumption of a large number of data elements
per processor. This has significant impact on the
kinds of algorithms that are effective in practice.

Network technology is advancing as well, but it is
not driven by the same volume market forces as
microprocessors and memory. Currently, communi-
cation bandwidth lags far behind internal processor
memory bandwidth and the time to move data across
the network is far greater than the time to move data
between chips on a node. Moreover, the realizable
performance is limited by the interface between the
network and the node, which consumes processing
cycles just getting data into and out of the network.
Although network interfaces are improving, proces-
sors are improving in performance even faster, so we
must assume that high latency and overhead of com-
munication, as well as limited bandwidth, will contin-
ue to be problems.

There appears to be no consensus emerging on
the interconnection topology: The networks of new
commercial machines are typically different from
their predecessors and different from one another.
In addition, most production parallel machines can
operate in the presence of network faults and allow
the operating system to assign programs to collec-
tions of nodes. Thus, the physical interconnect
underlying a program may vary even on a single
machine. Attempting to exploit a specific network
topology is likely to yield algorithms that are not very
robust in practice.

The convergence of parallel architectures is reflect-
ed in our LogP model that addresses significant com-

mon issues while suppressing machine specific ones,
such as network topology and routing algorithm. The
model characterizes a parallel machine by a small set
of parameters. In our approach, a good algorithm
embodies a strategy for adapting to different
machines in terms of these parameters.

LogP Model
Starting from the technological motivations previous-
ly discussed, together with programming experience
and examination of popular theoretical models, we

have developed a model of a distributed-memory
multiprocessor in which processors communicate by
point-to-point messages. The model specifies the per-
formance characteristics of the interconnection net-
work, but does not describe the structure of the
network.

The main parameters of the model are the follow-
ing (illustrated in Figure 2):

L: An upper bound on the latency, or delay,
incurred in communicating a message containing
a word (or small number of words) from its
source processor/memory module to its target
processor/memory module.

o: The overhead, defined as the length of time that a
processor is engaged in the transmission or
reception of each message. During this time, the
processor cannot perform other operations.

g: The gap, defined as the minimum time interval
between consecutive message transmissions or
consecutive message receptions at a processor.
The reciprocal of g corresponds to the available
per-processor communication bandwidth.

P: The number of processor/memory modules.

The parameters L, o, and g are typically measured
as multiples of the processor cycle time. The model is
asynchronous, in that processors work asynchronously
and the latency experienced by any message is unpre-
dictable, but is bound above by L in the absence of
stalls. Because of variations in latency, messages direct-
ed to a given target module may not arrive in the same
order as they are sent. The basic model assumes that
all messages are of a small fixed size. Furthermore, it
is assumed that the network has a finite capacity, such
that at most ⎡L/g ⎤ messages can be in transit from any
processor or to any processor at any time. If a proces-
sor attempts to transmit a message that would exceed
this limit, it stalls until the message can be sent with-
out exceeding the capacity limit.

In analyzing an algorithm, the key metrics are the
maximum time and the maximum amount of storage
used by any processor. In order to be considered cor-
rect, an algorithm must produce correct results
under all interleavings of messages consistent with
the upper bound of L on latency. However, in esti-
mating the running time of an algorithm, we assume
that each message incurs a latency of L.

LogP models communication but does not attempt
to model local computation. We have resisted the
temptation to provide a more detailed model of the
individual processors taking into account factors such
as cache size or pipeline structure, and rely instead on
the existing body of knowledge in implementing fast
sequential algorithms on modern uniprocessor sys-
tems to fill the gap. An implementation of a good par-
allel algorithm on a specific machine will surely
require a degree of local tuning.

There is a concern that LogP has too many para-
meters, which makes analysis of interesting algo-
rithms difficult. Fortunately, the parameters are not

COMMUNICATIONS OF THE ACM November 1996/Vol. 39, No. 11 81

P M P M P M. . .
P (processors)

oo (overhead)

L (latency)

Interconnection network

g (gap)

Limited capacity

(L/g to or from

a processor)

Figure 2. The LogP model describes an abstract
machine configuration in terms of four performance
parameters: L, the latency experienced in each 
communication event; o, the overhead experienced 
by the sending and receiving processors for each 
communication event; g, the gap between successive
sends or successive receives by a processor; and P, 
the number of processor/memory modules.

L: latency or delay

O: overhead (processor busy in 
communication)

g: gap

P: number of processors / processes 1/g = bandwidth



Abhinav Bhatele, CMSC714

alpha + n * beta model

• Another model for communication

9

Tcomm = α + n × β

α: latency

n: size of message

β: bandwidth



Abhinav Bhatele, CMSC714

Questions
• Main assumption made in the paper is that overhead increases linearly with the processor count 

but it is independent of work 'w'. Is this a feasible assumption? Don't we usually increase our 
messaging, waits etc. when there's more input? What is the situation in real systems?

• Is there a consensus on parallel algorithm modeling, like do academics use something like 
isoefficiency to explain how approximately efficient an algorithm is in their papers? I'm curious 
how exactly a parallel algorithm is designed and tested to prove it's scalable.

• Can you show some examples of the isoefficiency metric? And how does the speedup curve 
look like?

• For problem that have low overhead and limited concurrency (like Dijkstra’s problem), we can 
create a fake high concurrency environment, can we use the dynamic load balancing strategy?

• How to analyze the system’s isoefficiency due to contention? What is the most important factor 
that affect the overhead time?

10

Isoefficiency: Measuring the Scalability of Parallel Algorithms and Architectures



Abhinav Bhatele, CMSC714

Questions
• How is gap related to the bandwidth? Also why network capacity is defined as L/g?

• What is AM (Active Message Libraries)? how do they work and how we can utilize them?

• Is LogP only suitable for fast algorithms? Any other tools designed for analyzing the 
complexity?

• Why block and block cyclic layout do not yield optimal parallel algorithm? Briefly 
illustrate

• What does saturation, long messages specialized hardware support and communication 
patterns be useful as parameters?

• In general do you think LogP is a good candidate for analysis? Which analysis tool you 
recommend most and most widely used for a wide range of problems?

11

LogP: A Practical Parallel Model of Computation



Abhinav Bhatele 

5218 Brendan Iribe Center (IRB) / College Park, MD 20742 

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?


