High Performance Computing Systems (CMSC714)

Lecture 14: Autotuning

Abhinav Bhatele, Department of Computer Science

UNIVERSITY OF

MARYLAND

Summary of last lecture

® |soefficiency

W=KXt,
® Helps us understand scalability and computation-communication tradeoffs
® Performance modeling

® Analytical: LogP, alpha-beta model

S DEPARTMENT OF :
18”745”,@56 COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Autotuning

e Ultimate goal: performance portability — reasonable performance as we move from
one architecture to the next

® Generation and exploration of a search space to identify the best performing option

* Evaluated through models or empirical measurement

® Search space:
* Code variants
* Application parameters

* System parameters

QERSIT
e&
Q

=% DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Different approaches

® Empirical autotuning
* Execute each code variant or parameter combinations to identify the best performing one

* Can also use runtime prediction models instead of running code

® Code variants
* Code organization, data structures, algorithms

* Parallelization strategies

* Data movement optimization: data placement, blocking/tiling

RSI
QERSIT
QS

=% DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Exploring the search space

® Brute force: try every option in the search space empirically
® How to limit the search space to a subset!?
® Model-free: simulated annealing, genetic algorithms

® Model-based: analytical/empirical/machine learning models

* Limited by accuracy of models

SAE:* DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Software Engineering Challenges

o Offline auto-tuning can make compilation slow

* Many variants need to be executed

® Empirical auto-tuning involves the developer in the process
® Build process for auto-tuned code can be complex

® Debugging auto-tuned code can be challenging

S DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Libraries

® |solate performance-critical sections behind a standard API

o ATLAS, Spiral, FFTW

QERSIT
e&
Q

=% DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Application-level Tools

® Jools allow expressing tunable parameters and exposing code variants

e |f performance depends on input, tuning must be done at runtime

* Active Harmony

RSI
QERSIT
QS

=% DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

ATLAS

e Automatically Tuned Linear Algebra Software based on Automated Empirical
Optimization of Software (AEQOS)

® (Goal: Portable efficient implementation of BLAS

* Blocking factor, different source code implementations

e BLAS has three levels:

e | evel | is vector-vector
e | evel 2 is vector-matrix

e | evel 3 is matrix-matrix

@@ %Egﬁlg%%\gROSFCIENCE Abhinav Bhatele, CMSC7 14
«11{‘;”&0

ATLAS

® |Level 2 and 3 can benefit from memory blocking

* Reduce movement of vector operands in Level 2

* Reduce movement of both operands in Level 3

® (Goal: Generate an LI cache-contained matrix multiply kernel

@@ %Egﬁlg%%\gROSFCIENCE Abhinav Bhatele, CMSC7 14
«11{‘;”&0

10

Questions

Autotuning in High-Performance Computing Applications

® How is the optimal time for a code determined (i.e. when does an optimizer stop/
consider it has converged to the optimal solution)

® How are code variants generated concretely

® how much of the autotuning that occurs is made public to the programmer? Or
does he/she just see the updated executable after autotuning completes! I'm not
referring to application-level autotuning, rather compiler-level and library-level.

® The use of model-free vs model-based selection mechanisms is described in this
paper (section V). Model-free referring to the use of global and local search

algorithms and model-based referring to the use of analytical performance models to

predict performance metrics. Which is more commonly used and why?! Or is the
hybrid approach the most popular?

S DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714

Questions

Automated empirical optimizations of software and the ATLAS project

® What are some concrete linear algebra optimizations that are highly architecture
dependent!?

® What is cache blocking?

® Do AEOS packages ever go obsolete or are they just updated whenever deemed
necessary!

® |t seems that the main benefit of AEOS is being able to optimize programs to run on
different architectures. How does operating system factor in?

® The paper talks about the benefits of an AEOS package being written in lower-level
languages vs higher-level languages. Which tend to be used more frequently and why?

S DEPARTMENT OF :
zﬁwg COMPUTER SCIENCE Abhinav Bhatele, CMSC714 12

Questions?

48
\h B

)

UNIVERSITY OF

MARYLAND

Abhinav Bhatele
5218 Brendan Iribe Center (IRB) / College Park, MD 20742
phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

