
Lecture 14: Autotuning
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)

Abhinav Bhatele, CMSC714

Summary of last lecture

• Isoefficiency

• Helps us understand scalability and computation-communication tradeoffs

• Performance modeling

• Analytical: LogP, alpha-beta model

2

W = K × to

Abhinav Bhatele, CMSC714

Autotuning

• Ultimate goal: performance portability — reasonable performance as we move from
one architecture to the next

• Generation and exploration of a search space to identify the best performing option

• Evaluated through models or empirical measurement

• Search space:

• Code variants

• Application parameters

• System parameters

3

Abhinav Bhatele, CMSC714

Different approaches

• Empirical autotuning

• Execute each code variant or parameter combinations to identify the best performing one

• Can also use runtime prediction models instead of running code

• Code variants

• Code organization, data structures, algorithms

• Parallelization strategies

• Data movement optimization: data placement, blocking/tiling

4

Abhinav Bhatele, CMSC714

Exploring the search space

• Brute force: try every option in the search space empirically

• How to limit the search space to a subset?

• Model-free: simulated annealing, genetic algorithms

• Model-based: analytical/empirical/machine learning models

• Limited by accuracy of models

5

Abhinav Bhatele, CMSC714

Software Engineering Challenges

• Offline auto-tuning can make compilation slow

• Many variants need to be executed

• Empirical auto-tuning involves the developer in the process

• Build process for auto-tuned code can be complex

• Debugging auto-tuned code can be challenging

6

Abhinav Bhatele, CMSC714

Libraries

• Isolate performance-critical sections behind a standard API

• ATLAS, Spiral, FFTW

7

Abhinav Bhatele, CMSC714

Application-level Tools

• Tools allow expressing tunable parameters and exposing code variants

• If performance depends on input, tuning must be done at runtime

• Active Harmony

8

Abhinav Bhatele, CMSC714

ATLAS

• Automatically Tuned Linear Algebra Software based on Automated Empirical
Optimization of Software (AEOS)

• Goal: Portable efficient implementation of BLAS

• Blocking factor, different source code implementations

• BLAS has three levels:

• Level 1 is vector-vector

• Level 2 is vector-matrix

• Level 3 is matrix-matrix

9

Abhinav Bhatele, CMSC714

ATLAS

• Level 2 and 3 can benefit from memory blocking

• Reduce movement of vector operands in Level 2

• Reduce movement of both operands in Level 3

• Goal: Generate an L1 cache-contained matrix multiply kernel

10

Abhinav Bhatele, CMSC714

Questions
• How is the optimal time for a code determined (i.e. when does an optimizer stop/

consider it has converged to the optimal solution)

• How are code variants generated concretely

• how much of the autotuning that occurs is made public to the programmer? Or
does he/she just see the updated executable after autotuning completes? I’m not
referring to application-level autotuning, rather compiler-level and library-level.

• The use of model-free vs model-based selection mechanisms is described in this
paper (section IV). Model-free referring to the use of global and local search
algorithms and model-based referring to the use of analytical performance models to
predict performance metrics. Which is more commonly used and why? Or is the
hybrid approach the most popular?

11

Autotuning in High-Performance Computing Applications

Abhinav Bhatele, CMSC714

Questions

• What are some concrete linear algebra optimizations that are highly architecture
dependent?

• What is cache blocking?

• Do AEOS packages ever go obsolete or are they just updated whenever deemed
necessary?

• It seems that the main benefit of AEOS is being able to optimize programs to run on
different architectures. How does operating system factor in?

• The paper talks about the benefits of an AEOS package being written in lower-level
languages vs higher-level languages. Which tend to be used more frequently and why?

12

Automated empirical optimizations of software and the ATLAS project

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

