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Summary of last lecture

• Isoefficiency

• Helps us understand scalability and computation-communication tradeoffs

• Performance modeling

• Analytical: LogP, alpha-beta model
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Autotuning

• Ultimate goal: performance portability — reasonable performance as we move from 
one architecture to the next

• Generation and exploration of a search space to identify the best performing option

• Evaluated through models or empirical measurement

• Search space:

• Code variants

• Application parameters

• System parameters
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Different approaches

• Empirical autotuning

• Execute each code variant or parameter combinations to identify the best performing one

• Can also use runtime prediction models instead of running code

• Code variants

• Code organization, data structures, algorithms

• Parallelization strategies

• Data movement optimization: data placement, blocking/tiling

4



Abhinav Bhatele, CMSC714

Exploring the search space

• Brute force: try every option in the search space empirically

• How to limit the search space to a subset?

• Model-free: simulated annealing, genetic algorithms

• Model-based: analytical/empirical/machine learning models

• Limited by accuracy of models
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Software Engineering Challenges

• Offline auto-tuning can make compilation slow

• Many variants need to be executed

• Empirical auto-tuning involves the developer in the process

• Build process for auto-tuned code can be complex

• Debugging auto-tuned code can be challenging
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Libraries

• Isolate performance-critical sections behind a standard API

• ATLAS, Spiral, FFTW
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Application-level Tools

• Tools allow expressing tunable parameters and exposing code variants

• If performance depends on input, tuning must be done at runtime

• Active Harmony
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ATLAS

• Automatically Tuned Linear Algebra Software based on Automated Empirical 
Optimization of Software (AEOS)

• Goal: Portable efficient implementation of BLAS

• Blocking factor, different source code implementations

• BLAS has three levels:

• Level 1 is vector-vector

• Level 2 is vector-matrix

• Level 3 is matrix-matrix
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ATLAS

• Level 2 and 3 can benefit from memory blocking

• Reduce movement of vector operands in Level 2

• Reduce movement of both operands in Level 3

• Goal: Generate an L1 cache-contained matrix multiply kernel
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Questions
• How is the optimal time for a code determined (i.e. when does an optimizer stop/ 

consider it has converged to the optimal solution)

• How are code variants generated concretely

• how much of the autotuning that occurs is made public to the programmer?  Or 
does he/she just see the updated executable after autotuning completes?  I’m not 
referring to application-level autotuning, rather compiler-level and library-level.

• The use of model-free vs model-based selection mechanisms is described in this 
paper (section IV).  Model-free referring to the use of global and local search 
algorithms and model-based referring to the use of analytical performance models to 
predict performance metrics.  Which is more commonly used and why?  Or is the 
hybrid approach the most popular?
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Questions

• What are some concrete linear algebra optimizations that are highly architecture 
dependent?

• What is cache blocking?

• Do AEOS packages ever go obsolete or are they just updated whenever deemed 
necessary?

• It seems that the main benefit of AEOS is being able to optimize programs to run on 
different architectures. How does operating system factor in?

• The paper talks about the benefits of an AEOS package being written in lower-level 
languages vs higher-level languages.  Which tend to be used more frequently and why?
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