
Lecture 17: Topology Aware Mapping
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)

Abhinav Bhatele, CMSC714

Summary of last lecture

• Most HPC systems use a job/batch scheduler

• Scheduler decides what jobs to run next and what resources to allocate

• Backfilling to use idle nodes and improve utilization

• Different quality of service metrics to evaluate schedulers

2

Abhinav Bhatele, CMSC714

Task Mapping

• Also referred to as task placement or node mapping

• Given an allocation, decide which MPI processes are placed on which physical nodes/
cores

• In case of task-based models, map finer-grained tasks to cores

• Goal:

• Minimize communication volume on the network

• Optimize “unavoidable” communication on the network

3

Abhinav Bhatele, CMSC714

Graph embedding problem

• Inputs: Application communication graph, network topology graph (of one’s job
allocation)

• Output: Process-to-node/core mapping

• Most mapping algorithms do not consider that communication patterns might evolve
over time

4

Abhinav Bhatele, CMSC714

Metrics to evaluate mapping

• Hop-count

• Hop-bytes

5

∑
(i,j

H(i, j)

∑
(i,j

C(i, j) × H(i, j)

Abhinav Bhatele, CMSC714

Different techniques

• Heuristics-based

• Recursive bi-partitioning

• Random pairwise swaps

• Physical optimization problems

• Simulated annealing

• Genetic algorithms

6

Abhinav Bhatele, CMSC714

Global link bottleneck in dragonfly systems

• Few global links when building a smaller than full-sized system

7

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

One supernode in the PERCS topology

LL
LR
D

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

�

�

�

�

�

�
�

�	

��

��

��

��

��

��

��

��

�	

�

��

��
��

�� �� ��
��

��

�	

�

��

��

Figure 1: The PERCS network – the left figure shows all to all connections within a supernode (connections originating from only two
nodes, 0 and 16, are shown to keep the diagram simple). The right figure shows second-level all to all connections across supernodes
(again D links originating from only two supernodes, colored in red, are shown).

topologies. Using traces collected by our emulation-based tech-
nique, we simulate application runs on hundreds of thousands of
cores. Non-uniform link bandwidths on different classes of links
complicate the issue of identifying the weakest links. Interesting
issues arise because of the imbalance in number of different types
of links available when using a small subset of the entire topology.
Hence, we do simulations for one quarter of the full system size
(assuming 300 supernodes) and the full system as well.

The novel contributions of this paper are:
• To the best of our knowledge, this paper has the first analysis

of congestion on a two-level direct topology due to routing
and mapping choices. We present several solutions for avoid-
ing hot-spots on such networks.

• The paper presents the largest packet-level detailed network
simulations done so far (for 307,200 cores) for several com-
munication patterns. These simulations help us analyze ap-
plication performance in great detail through performance
counter-based per-level link statistics, visualization tools and
predicted application performance.

• We present several intelligent mappings for 2D, 4D and mul-
ticast patterns and compare their performance when coupled
with direct and indirect routing on the PERCS network.

2. THE PERCS TOPOLOGY
The PERCS interconnect topology is a fully connected two-tier

network [2]. Figure 1 (left) shows one supernode of the PERCS
topology as a large circle. Within the large circle, a small circle
represents a quad chip module (QCM) which consists of four 8-
core Power7 chips. We will refer to a QCM as a node in rest of
the paper. Eight nodes in one color in each quadrant constitute a
drawer. Each node has a hub/switch which has three types of links
originating from it - LL, LR and D links. There are seven LL links
(24 GB/s) that connect a node to seven other nodes in the same
drawer. In addition, there are 24 LR links (5 GB/s) that connect
a node to the remaining 24 nodes of the supernode. LL and LR
links constitute the first tier connections that enable communication

between any two nodes in one hop. To maintain simplicity, LL and
LR links originating from only two nodes, numbered 0 and 16 are
shown in Figure 1 (left).

On the right, in Figure 1, the second tier connections between su-
pernodes are shown. Every supernode is connected to every other
supernode by a D link (10 GB/s). These inter-supernode connec-
tions originate and terminate at hub/switches connected to nodes; a
given hub/switch is directly connected to only a fraction ( 16) of
the 512 supernodes (full system size). For simplicity, D links orig-
inating from only two supernodes (in red) have been shown. 32
cores of a node can inject on to the network at a rate of 192 GB/s
through a hub/switch directly connected to them.

 1

 10

 100

 1000

 100 200 300 400 500

R
at

io
 o

f L
L+

LR
 t

o
D

 li
nk

s

Number of supernodes

Figure 2: The number of D links reduces significantly com-
pared to that of LL and LR links as one uses fewer and fewer
supernodes in the PERCS topology.

An important thing to note about the PERCS topology is the ra-
tio of the number of first level connections to that of second level
connections. For a system with n supernodes, the number of D
links is (n⇥ (n� 1)). There are (32⇥ 31⇥ n) LL and LR links
in total. Hence, there are (992/(n � 1)) first tiers links for every
second tier link as shown in Figure 2. One can observe that as the
number of supernodes used by an application gets smaller, there is

Abhinav Bhatele, CMSC714

Questions
• Does the favorable performance of SA, or the proposed divide-and-conquer method, generalize to other topologies (such as

the more modern dragonfly and fat-tree)?

• How well will the proposed mapping method perform in other applications, such as FMM accelerated N-body (dense
interaction) problems?

• Does the topology-aware task mapping method based on SA also help improving performance in manycore processors in a
single node?

• The paper is from 2005. Is the proposed method still used today? Are there more advanced techniques used nowadays?

• The authors note that their implementation of the proposed layout optimization algorithm is slow, taking several hours to
run in some cases. They also claim that this could be easily parallelized for production purposes. Is it obvious that the
proposed algorithm can be easily parallelized? Has somebody done this?

• Since the method takes the communication matrix as input, does this mean that we have to run the HPC application in full
before the layout can be optimized? Could you extrapolate from the communication matrix of a small-scale run so that the
full-scale version never has to run unoptimized?

• I'm confused about where the inverse temperature parameter comes from in the Metropolis algorithm. Do we call this
"temperature" because of the analogy to free energy? This isn't actually temperature, right?

8

Optimizing task layout on the Blue Gene/L supercomputer

Abhinav Bhatele, CMSC714

Questions
• Indirect routing increases overall network traffic, so the comparable performance with RNM is a bit counter-

intuitive. How can this be explained?

• Indirect routing performed slightly worse than RNM in the 64SN case but slightly better in the 300SN case. How
can this be explained? (One might expect the improvement of RNM to be larger if there are more SNs)

• Time profile results are only shown for DEF and RNM. How would it look like in DFI and RDI?

• Why did the authors not try "Random Nodes with Indirect Mapping”, which might be also promising?

• If the mapping schemes were implemented in a real system, where are they implemented? In the MPI runtime?
Or, does the application programmer has to implement it in the application code?

• The authors experiment with indirect routing for the default and the random drawers mappings. Is there a
reason to not experiment with indirect routing in the other mapping cases? Is there a reason that this type of
combination wouldn't work or wouldn't make sense?

• Are there other communication patterns unexplored in this paper that are commonly used? Are the three that
are explored the most common?

9

Avoiding hot-spots on two-level direct networks

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

