
Lecture 23: Parallel Discrete-event Simulation
Abhinav Bhatele, Department of Computer Science

High Performance Computing Systems (CMSC714)

Abhinav Bhatele, CMSC714

Announcements

• Project demos: December 3 and 5

• Final project due on: December 11, 5:00 pm

2

Abhinav Bhatele, CMSC714

Summary of last lecture

• n-body problem: gravitational forces on celestial bodies

• Several parallel algorithms:

• Barnes-Hut

• Fast Multiple Method

• Particle Mesh

• P3M

• Simulation codes: FLASH, Cello, ChaNGa, PKDGRAV

3

Abhinav Bhatele, CMSC714

Discrete-event simulation

• Modeling a system in terms of events that happen at discrete points in time

• Either model discrete sequence of events

• Or model time-stepped sequences

• Simulation typically involves system state, event list and a global time variable

4

Abhinav Bhatele, CMSC714

Parallel discrete-event simulation

• Divide the events to be simulated among processes

• Send messages wherever there are causality relationships between events

• Synchronize global clock periodically

5

Abhinav Bhatele, CMSC714

Conservative vs. optimistic simulation

• Conservaties DES

• Do not allow any causality errors

• Optimistic DES

• Allow causality errors and rollback if needed

6

Abhinav Bhatele, CMSC714

Epidemiology simulations

• Agent-based modeling to simulate epidemic diffusion

• Models agents (people) and interactions between them

• People interact when they visit the same location at the same time

• These “interactions” between pairs of people are represented as “visits” to locations

• A bi-partite graph of people and locations is used

7

Abhinav Bhatele, CMSC714

EpiSimdemics: Parallel implementation

• All the people and locations are distributed
among all processes

• Computation can be done locally in parallel

• Communication when sending visit and
infection messages

• Uses Charm++, a message-driven model

8

TABLE II
REPORTED PERFORMANCE OF STATE-OF-THE-ART SIMULATORS

Code No. of agents Simulated period Machine No. of cores Simulation time

FRED [18] 289 million Unknown Blacklight @ PSC 16 threads 4 hours
GSAM [19] 262.9 million Unknown 2.4 GHz Opteron 8216 4 cores 72 minutes
SPaSM [20] 281 million 180 days 2.4 GHz Intel Xeon 256 cores 8–12 hours
EpiSimdemics [10] 280.4 million 120 days Blue Waters @ NCSA 16,384 cores 134.89 s

a 1-month spread of pandemic influenza A (H1N1), if using
timesteps of 10 minutes [24].

EpiSims is an MPI-based epidemic simulation system. It
was used to simulate epidemic outbreaks in Portland, Ore-
gon [6]. EpiSims is a conceptual forerunner to the current
EpiSimdemics code in terms of modeling capability and
accounting for human mobility (not in terms of the simulation
software design and implementation). Prior works on EpiSim-
demics [22], [10] are most closely related to the current work.
The first version of EpiSimdemics is an MPI-based system that
was run on high performance clusters. EpiSimdemics achieved
roughly linear speedup, up to about 350 to 400 compute cores.
For example, in epidemic simulations on the state of California
(33 million people), increasing the number of cores by 48⇥
resulted in a 42⇥ decrease in execution time.

Marked improvements in performance and scalability of
EpiSimdemics were achieved with a re-implementation that
uses the Charm++ runtime system [25]. This version surpassed
the speedup attained in [21] by achieving a speedup of 14,357
on 65,536 cores (22% efficiency) on a Cray XE6 [10]. Further
scaling resulted in a speedup of 58,649 (16% efficiency) on
360,448 cores. Table II summarizes the performance of some
of the simulation codes mentioned in this section. Since the
IPDPS publication [10], we have made significant improve-
ments to the performance and scaling of EpiSimdemics (details
in Section VII).

V. INNOVATIONS REALIZED

We now describe the parallel implementation of agent-based
simulation in EpiSimdemics to model epidemic diffusion, and
the optimizations to improve scaling and efficiency.

A. Overview of the Algorithm

EpiSimdemics [22] is an individual-based simulation frame-
work to study epidemic diffusion in a population. In our
model, a person interacts with another person when they both
visit a location at the same time. The longer the interaction
period, the higher the chance of transmitting a disease if
one person is infectious and the other person is susceptible.
This representation of interactions between people as visits
to locations avoids explicit messages between every pair of
interacting persons. We rely on a bipartite graph between
people and locations to represent the social contact network
and explicitly represent each individual person and location in
the input dataset.

EpiSimdemics uses a hybrid time-stepped and discrete-event
simulation approach. The time step is typically one simulated

day and within each time step, a discrete event simulation is
performed. There are two major computation phases in each
time step (while loop over number of simulated days) as
shown in Algorithm 1. In the first phase (lines 2–8), each
person, p, identifies locations to visit depending on the visit
schedule and the person’s health state, hp. Then, for each such
visit, it sends a message m to the destination location l. In the
second phase (lines 9–29), each location l processes received
visit messages by first converting them into events, i.e., arrival
and departure on a particular sublocation, ls (lines 10-14),
and then by executing a sequential discrete event simulation
(lines 15–28) to identify interactions and to compute disease
transmission (lines 21–26).

Algorithm 1: Simulating Epidemic Diffusion
1 while d dmax do

2 for p 2 P do

3 Evaluate scenario trigger conditions;
4 Update health state hp, if necessary, and reevaluate triggers;
5 foreach v 2 Vp (visit schedule of p) do

6 Send visit message m to location l;
7 end

8 end

9 for l 2 L do

10 foreach m destined for l do

11 Determine the sublocation ls to visit;
12 Create an arrival and departure event for each visit;
13 Put the events into the event queue qe of l;
14 end

15 Reorder qe by the time of event in ascending order;
16 foreach e 2 qe do

17 if e is arrival then

18 Put p into sublocation ls;
19 else

20 Remove p from sublocation ls;
21 foreach p0 currently in ls do

22 Compute disease transmission probability q
between p0 and p;

23 if q > threshold then

24 Send infection message to the infected
person (p or p0);

25 end

26 end

27 end

28 end

29 end

30 d++;
31 end

In the parallel implementation of Algorithm 1, all the people
and locations in the input population data are distributed
among all processes. The computation in each phase can be
done in parallel on all processes. Each phase generates some
communication during the time step (shown in red) and results
in visit and infection messages being sent to remote locations

Abhinav Bhatele, CMSC714

Trace-driven network simulation

• Task is started at time ts

• Completion event scheduled for time ts + te

• Possible remote messages to other PEs

• Kick off other tasks that depend on a message

9

4 Acun et al.

TraceR

CODES on
ROSS

Performance Prediction

Network Configuration

Application Traces from BigSim
Execute Task

First task

Send message
to other PEs

Schedule
completion event

Receive message
from other PEs

Completion Event

Message Recv
Event

Remote
Message

Fig. 1: Integration of TraceR with BigSim emulation and CODES (left). Forward path
control flow of trace-driven simulation (right).

Let us consider an MPI application that performs an iterative 5-point stencil
computation on a structured 2D grid to understand the simulation process. In
each iteration, every MPI process sends boundary elements to its four neighbors
and waits for ghost elements from those neighbors. When the data arrives, the
MPI process performs the 5-point stencil followed by a global reduction to de-
termine if another iteration is required. From TraceR’s perspective, every MPI
process is a PE. Tasks are work performed by these MPI processes locally: ini-
tial setup, sending boundary elements, the 5-point stencil computation, etc. The
Kicko↵ event triggers the initial setup task. Whenever an MPI process receives
ghost elements, a Message Recv event is generated. The dependence of the sten-
cil computation on the receives of ghost elements is an example of a backward
dependency. Similarly, posting of a receive by an MPI process is a prerequisite
for TraceR to execute the Message Recv event.

Figure ?? (right) presents the forward path control flow of a typical simu-
lation in TraceR. Application traces are initially read and stored in memory.
When the system setup is complete, the Kicko↵ event for every PE is executed,
wherein the PEs execute their first task. In the 2D stencil example, this leads to
execution of the initial setup task. What happens next depends on the content of
the task being executed, and the virtual time, ts, at which the task is executed.

Every task T has an execution time te, which represents the virtual time T
takes for executing the SEB it represents. When a task is executed, TraceR

marks the PE busy and schedules a completion event for T at ts + te (Algo-
rithm ??(a)). During the execution of a task, messages for other PEs may be
generated. These actions are representative of what happens in real execution.
When the MPI process is executing a SEB, e.g. to send boundary elements, the
process is busy and no other SEB can be executed till the sending of boundary is
complete. The generated messages are handed over to CODES for delivery. Note
that the execution of a task in our framework only amounts to fast-forwarding
of the PE’s virtual time and delegation of messages to CODES; the actual com-
putation performed by the SEB is not repeated.

When a completion event is executed, the task T is marked done and the
PE is marked available (Algorithm ??(c)). Next, some of the tasks whose back-
ward dependencies included T may now be ready to execute. Thus, those tasks

Abhinav Bhatele, CMSC714

Running TraceR in optimistic mode

• Record extra information during forward execution to enable rollback later

• List of tasks triggered by a message recv or completion event

• Implement reverse handlers for each event

10

Abhinav Bhatele, CMSC714

Questions

• Is there a reason why rollback efficiency is calculated as a negative score?

• In the intro, the paper describes one of the weaknesses of current DES-based
network simulators as only simulating “synthetic communication patterns”. What
exactly is meant by this?

• Is the optimistic mode a unique concept to TraceR? Or is it commonly implemented
in tools that execute on instruction traces?

11

Preliminary Evaluation of a Parallel Trace Replay Tool for HPC Network Simulations

Abhinav Bhatele, CMSC714

Questions

12

Overcoming the Scalability Challenges of Epidemic Simulations on Blue Waters
• It says receivers have no prior knowledge of expected messages and this turns process into a slower BSP, but locations do have access to the people they are

connected to. Is it more expensive to send a message like "I'm not visiting today" per person to each connected location? so then locations can check all
messages to see whose messages is not send yet.

• We usually say charm is suited for over decomposed problems, but is there a minimum limit for this over decomposition? because paper mentions an
overhead.

• What is a sublocation? I don't quite understand how exclusive sets interact with each other in the same location? like 4th and 5th nodes in Figure 6.

• For the Charm SMP mode section: I don't quite follow how this creates more communication threads/cores? say n is 12 and k is 4, does it mean there are 4
communication/OS processes and 4 compute threads?

• Do the government agencies develop these models like hierarchical social network? or CS people develop them then government chooses one of them?

• How these simulations are used? do they stop the simulation make an intervention at some point and then fork the simulation to see the effect of it? or are
they just used to get a sense of how dangerous a disease with a new transmission function?

• How do we validate these simulations or transmission functions?

• The paper describes METIS as a tool that “allows users to specify the load balance constraint in terms of the tolerance variable in the sum of vertex weights
per partition”. Exactly how does this work?

• Can you talk a little bit about how the completion detection mechanism works? The text says that “completion is detected when the participating objects
have produced and consumed an equal number of messages globally” yet I had been under the impression that this communication of messages may be non-
deterministic.

• What are some of the benefits and downsides to the two buffer flushing mechanisms (per-buffer flushing vs space-wise flushing)

Abhinav Bhatele

5218 Brendan Iribe Center (IRB) / College Park, MD 20742

phone: 301.405.4507 / e-mail: bhatele@cs.umd.edu

Questions?

