### **6-DOF HAPTIC RENDERING**

Zhen Shao

 $\star \star \star \star$ 

Friday, October 22, 2010

 $\star \star \star \star$ 

### 6-DOF vs 3-DOF

\* 3-DOF: point, position, force

\* 6-DOF: object, position & orientation, force & torque

Friday, October 22, 2010

3DOF haptic rendering: virtual object A, 3D position p(input) = => contact point p'(on A), contact force f( based on p,p').

6DOF haptic rendering: virtual object A, virtual object B(pos, ori <-- input) ==> multiple contact points, force and torque

# Haptic Rendering Pipeline

\* direct rendering

\* virtual coupling

Friday, October 22, 2010

short review, in case that Pete doesn't make it clear. advantages & disadvantages of each

### **Ideal and Practical**

\* ideal solution:

\* position: constraint-based rigid body dynamics simulation
\* force-feedback: virtual coupling

\* practical

# Direct Rendering Approaches

\* Gregory et al. 2000, Kim et al. 2003

\* Johnson and Willemsen 2003, 2004, Johnson and Cohen 2001, Nelson et al. 1999

### (Gregory et al. 2000) 6-DOF haptic display of polygonal models

\* can be used on moderately complex polygonal models

\* convex decomposition

\* predictive collision response(fast update)

\* force and torque interpolation

#### (Kim et al. 2003) 6-DOF haptic rendering using incremental and localized computations

\* localized contact computation: guaranteed by high motion coherence due to fast force update & spatial locality near contact regions

\* decompose surface, build hierarchies for fast proximity queries\* incremental method to estimate penetration depth

\* clustering nearby contacts to speed up force determination

#### (Johnson and Willemsen. 2004) Accelerated haptic rendering of polygonal models through local descent

\* local minimum distance(LMD) and spatialized normal cone hierarchies(SNCH)

\* maintaining LMDs between models during movement

\* each LMD less than cutoff distance is considered as a spring.

Friday, October 22, 2010

This algorithm will be detailed illustrated as an example for this set of methods.

## Virtual Coupling with Object Voxelization

\* McNeely et al. 1999

**\*** Renz et al. 2001

\* Wan and McNeely 2003

### (McNeely. 1999) 6-DOF haptic rendering using voxel sampling

\* enable manipulation modestly complex rigid object within an arbitrarily complex environment of static rigid object

\* global voxel size, voxmap

\* impedance-device and virtual coulper scheme

\* penalty based

Friday, October 22, 2010

This is the major paper to present in this set of methods.

#### (Wan and McNeely. 2003) Quasi-Static Approximation for 6-DOF haptic rendering

\* Quasi-static approximation (QSA)

\* solve for static equilibrium during each haptic time step

\* stable

# **Rigid Body Dynamics with Haptic Feedback**

- \* Impulse Dynamic Rigid Body Simulation
  - \* Chang and Colgate 1999
  - \* Constantinescu et al. 2004
- \* Constraint Based Rigid Body Simulation
  - \* Berkelman 1999
  - \* Ruspini and Khatib 2000
- \* Penalty Based Relaxed
  - \* McNeely et al. 1999
  - \* Wu 2000
  - \* Larsen 2001
  - \* Otaduy and Lin 2005

Friday, October 22, 2010

 $\langle \bullet \rangle$ 

#### (Chang and Colgate. 1997) Real-time Impulse-based simulation of rigid body systems for haptic display

\* based on virtual coupling( Colgate et al. 1995)

\* based on impulse-based simulation

\* heap of time-to-collide estimation, integration

#### (Ruspini and Khatib. 2000) The haptic display of complex graphical environments.

\* using standard constraint-based position updating algorithm

\* friction

\* based on Baraff 1992

Friday, October 22, 2010

This paper will be a representation because it is simply using the standard methods.

# Multi-resolution(LOD) Techniques

\* Otaduy and Lin 2003

**\*** Otaduy 2004

### **Recent Publications**

Kolensnikov and Zefran 2007 (penalty)
Otaduy and Lin 2006 (penalty, LOD, linearized model)
Barbic and James 2009 (penalty, LOD, deformable)



Friday, October 22, 2010

<◆