
October 31, 2012 Greg Maslov 1

Continuous Collision Detection

October 31, 2012 Greg Maslov 2

Problem

● Interpenetration
● Missed collisions

October 31, 2012 Greg Maslov 3

Applications

● Dynamics
● VR & games
● Robotics (Probabilistic Road Maps)
● CNC machining

October 31, 2012 Greg Maslov 4

Simple Solution: Swept Ellipsoid

October 31, 2012 Greg Maslov 5

Simple Solution: Swept Ellipsoid

October 31, 2012 Greg Maslov 6

Simple Solution: Swept Ellipsoid

October 31, 2012 Greg Maslov 7

Problems for Swept Ellipsoid

● Non-ellipsoids
● Non-linear paths
● Rotations
● Colliding two ellipsoids
● Articulated models

October 31, 2012 Greg Maslov 8

Maths: Canny's Algorithm

● Configuration space:
● Vertex: point p
● Edge: point p and unit vector e
● Face: normal vector n and distance to origin d

Complexity:

Face-Vertex

Vertex-Face

Edge-Edge

F = (n,d)

October 31, 2012 Greg Maslov 9

Intuitive Approach: Tessellation

● Voxels
– Slow!

October 31, 2012 Greg Maslov 10

Intuitive Approach: Tessellation

● Swept “Line-Swept Sphere” (LSS)
– Faster.

October 31, 2012 Greg Maslov 11

Intuitive Approach: Tessellation

● Backtracking finds time of 1st collision.
● Inexact!
● Fast, and handles articulated motion.

October 31, 2012 Greg Maslov 12

Intuitive Approach: Tessellation

S. Redon et al. (2004). Interactive and Continuous Collision Detection for Avatars in
Virtual Environments

October 31, 2012 Greg Maslov 13

Adaptive Subdivision

October 31, 2012 Greg Maslov 14

Kinetic Data Structures

October 31, 2012 Greg Maslov 15

Deformable Models

October 31, 2012 Greg Maslov 16

References

● Swept Ellipsoids: Fauerby, Kasper. (2003). Improved Collision detection and
Response. Online: http://www.peroxide.dk/papers/collision/collision.pdf

● Tessellation of Swept LSS + BVH Culling: Redon, S., Kim, Y. J., Lin, M. C.,
Manocha, D., & Templeman, J. (2004). Interactive and Continuous Collision Detection
for Avatars in Virtual Environments, 117. doi:10.1109/VR.2004.46

● Exact Algebraic CCD: Canny, J. (1986). Collision Detection for Moving Polyhedra.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(2), 200–209.
doi:10.1109/TPAMI.1986.4767773

● Adaptive Subdivision: Schwarzer, F., Saha, M., & Latombe, J.-C. (2002). Exact
Collision Checking Of Robot Paths. WAFR.
http://ai.stanford.edu/~latombe/papers/wafr02/collision.pdf

● Kinetic Data Structures: Guibas, L. (2001). Kinetic Data Structures. In D. P. Mehta &
S. Sahni (Eds.), Handbook of Data Structures and Applications (pp. 23–1--23–18).
Chapman and Hall/CRC.
http://graphics.stanford.edu/projects/lgl/papers/g-KDS_DS-Handbook-04/g-KDS_DS-H
andbook-04.pdf

http://www.peroxide.dk/papers/collision/collision.pdf
http://ai.stanford.edu/~latombe/papers/wafr02/collision.pdf
http://graphics.stanford.edu/projects/lgl/papers/g-KDS_DS-Handbook-04/g-KDS_DS-Handbook-04.pdf
http://graphics.stanford.edu/projects/lgl/papers/g-KDS_DS-Handbook-04/g-KDS_DS-Handbook-04.pdf
http://www.peroxide.dk/papers/collision/collision.pdf
http://ai.stanford.edu/~latombe/papers/wafr02/collision.pdf
http://graphics.stanford.edu/projects/lgl/papers/g-KDS_DS-Handbook-04/g-KDS_DS-Handbook-04.pdf
http://graphics.stanford.edu/projects/lgl/papers/g-KDS_DS-Handbook-04/g-KDS_DS-Handbook-04.pdf

October 31, 2012 Greg Maslov 1

Continuous Collision Detection

Hello, name, topic.

Please stop me at any time if I say something unclear
or if you have a question.

October 31, 2012 Greg Maslov 2

Problem

● Interpenetration
● Missed collisions

In this class we've seen a number of efficient discrete collision detection
methods. Most of them are based on some kind of culling, meaning finding a
way to reduce the number of collision checks that need to be made between
the primitives of two potentially colliding models: their triangles, or edges,
planes, vertices, or whatever representation you have.

These work well; you have your rigid body dynamics simulator, it updates the
position of every object at each timestep, then checks to see if any have
smashed into each other and need to be pulled apart and fixed.

If that sounds really messy and error-prone, it is. Resolution of
interpenetrations is a nontrivial problem.

Furthermore, you can have another problem when a collision is missed entirely
because of the discrete nature of the time step.

These problems crop up very often when simulating fast-moving objects, or
very thin objects. If you're trying to model a bullet colliding with a piece of
paper, then you're REALLY in trouble.

It would be better if you could find the exact point and time when the objects
WOULD have collided, if you had been simulating every infinitesimal point in
between.

Well, you can do a little better with discrete collision detection. Just decrease
the time step! In the limit as dt goes to zero, you're fine! Unfortunately, that
solution doesn't always result in good performance, and it still provides no
guarantee that you haven't missed any collisions.

That's where continuous collision detection comes in. :-)

October 31, 2012 Greg Maslov 3

Applications

● Dynamics
● VR & games
● Robotics (Probabilistic Road Maps)
● CNC machining

So where is continuous collision detection useful? Where does it provide
an advantage over discrete collision detection?

First is dynamics; that's the bullet example. Virtual reality and video
games also benefit from having precise collision information. In VR
systems particularly, the application is to interpolate between two
configurations of someone wearing a motion-capture suit; here your
simulation might get position updates only a few times per second, so
decreasing the time step is simply not an option.

Another area is robotics. I know a few of us here are in Dr. Alterovitz's
robotics class this semester, so you may have heard of the
Probabilistic Road Maps algorithm. This is a motion planning algorithm
that requires a particular primitive query, LINK, which asks if there is a
clear path for the robot to move from one configuration to another.
These configurations may be quite far apart in terms of where the tip
of your robot arm is, so you can't just check both endpoints; you have
to look at all points in between.

Finally we have CNC machining, which is a nice area to work in because
all your computation of toolpaths is done offline, ahead of time. You
can use as slow an algorithm as you can stand, and the more
precision, the better.

October 31, 2012 Greg Maslov 4

Simple Solution: Swept Ellipsoid

Let's start with something simple and concrete. I'm
going to present a very simple example of the class
of continuous collision detection algorithms called
“algebraic methods”.

Consider an ellipsoid moving around in an environment
composed of triangles. This is a good model for a lot
of things. In fact most first-person shooter games use
an ellipsoid to model the entire player character.

What we'd like to do is find the first triangle in the
environment that this ellipsoid will hit as it moves
along the velocity vector shown.

October 31, 2012 Greg Maslov 5

Simple Solution: Swept Ellipsoid

The first thing to note is that you can perform a simple
linear transformation on the environment and on the
ellipsoid to transform it into a unit sphere. This
immediately makes things much simpler, reducing
the problem to finding the time of collision between a
swept unit sphere and a triangle. This is now simple
enough to solve algebraically.

October 31, 2012 Greg Maslov 6

Simple Solution: Swept Ellipsoid

I won't go into the full algorithm here; like any collision detection
algorithm, there are a lot of special cases and branching decision
trees to go down.

For now I'll just derive one case, finding the point of collision between a
sphere and the plane containing the triangle.

We parameterize the sphere's motion by tracking its center point over
time. This is just linear interpolation from a starting position p_0 along
the object's scaled velocity vector “v”.

The signed distance between a point and a plane is just the plane's
normal, dot the point, plus the plane's constant.

And the time we're interested in, t, is when the signed distance between
the plane and the unit sphere is plus or minus one.

Solve it.
And if “t” is in the range zero to one, we have the time of collision and

can easily find the exact point of collision.
Now even if the sphere doesn't collide this way, it may go on to hit an

edge or a vertex later on in its path. Those collisions require solving a
quadratic equation.

So you can see that this idea is pretty simple to implement and fast to
execute.

So what are the problems?

October 31, 2012 Greg Maslov 7

Problems for Swept Ellipsoid

● Non-ellipsoids
● Non-linear paths
● Rotations
● Colliding two ellipsoids
● Articulated models

Well, obviously it only works for ellipsoids. Surprisingly not
everything can be sufficiently well approximated by an
ellipsoid.

Second, we only consider linear paths. If your ellipsoid is
doing something like, say, moving at the end of an
articulated model <swing arm>, the motion may be a lot
harder to parameterize, or result in difficult equations to
solve.

Another point is that our linear transformation trick won't be
applicable anymore if we allow the ellipsoid to rotate.

Analytically finding the intersection between a line segment
and a rotating ellipsoid moving on a nonlinear path? Good
luck!

And then we have the problem of finding the collision
between two moving objects, not just between an object
and a static environment.

Finally, if you have an articulated model like a robot arm or a
manikin, it neatly combines all of the above problems into
one big mess.

October 31, 2012 Greg Maslov 8

Maths: Canny's Algorithm

● Configuration space:
● Vertex: point p
● Edge: point p and unit vector e
● Face: normal vector n and distance to origin d

Complexity:

Face-Vertex

Vertex-Face

Edge-Edge

F = (n,d)

So let's briefly look at a more complicated algebraic algorithm for exact continuous rigid
body collision detection.

This algorithm was developed in 1986 by John Canny, whose name you may recognize as
being attached to the Canny edge detection algorithm.

It handles a lot of the problems mentioned on the previous slide: it allows arbitrary
polyhedral geometry, rotations, and colliding two objects which are both moving.

Consider the configuration space of a rigid body. It has a position X and a rotation,
represented by the quaternion Q, making a 7-dimensional vector in total.

Straight lines in this vector space correspond to arbitrary straight-line translations coupled
with smoothly interpolated rotations. Actually, if you've heard of SLERP, Spherical Linear
Interpolation, it depends on this fact: linear interpolation between two quaternions,
representing rotations, corresponds to motion along the great circle arc connecting two
points on a sphere.

So in this configuration space you can easily represent all of the features of a rigid body: its
vertices, edges, and faces.

As it turns out, you can then work out these algebraic constraint equations that represent
the three types of collisions that may occur. These multiplications by Q and Q-star are
quaternion rotations, putting the vector into the reference frame of the rigid body.

Finally, and I'm glossing over a LOT of important details, you can parameterize these
constraints over time, and find the time intervals of collision among all pairs of swept
features in your two rigid bodies. This requires the solution of a cubic equation, when the
motion is linear. The time intervals are then recursively merged to find the earliest time of
collision.

The whole algorithm takes O(n^2 log n) time, where n is the number of features (vertices,
edges, and faces) in both objects.

Unfortunately, although it's elegant and exact, it's too slow to work in real-time on models
with a significant number of triangles. It could be used as the primitive collision test in a
larger framework which performs some kind of culling.

October 31, 2012 Greg Maslov 9

Intuitive Approach: Tessellation

● Voxels
– Slow!

What about a faster method, which can take advantage of all
the existing highly optimized code out there for discrete
collision detection?

Well, the first thing I thought when reading about Swept
Volumes is, why not just SWEEP THE VOLUME, and see if
it collides?

You can do that. The process is called, in general,
tessellation.

Tesselation is computing an explicit polygonal mesh for the
swept volume.

The picture here used a voxel-based method to compute the
boundary of the volume that this Stanford bunny traces out
as it moves.

This can then be collided with the world using any old
discrete collision detection algorithm.

Unfortunately, using voxels and extracting a boundary
representation from them is very slow and uses a lot of
RAM.

October 31, 2012 Greg Maslov 10

Intuitive Approach: Tessellation

● Swept “Line-Swept Sphere” (LSS)
– Faster.

If your objects are simple enough, like ellipsoids or
these Line-Swept Spheres, then computing their
swept-volume tessellation can be made much faster,
by taking advantage of an exact algebraic description
of the swept surface, which is a little too involved for
me to go into here.

October 31, 2012 Greg Maslov 11

Intuitive Approach: Tessellation

● Backtracking finds time of 1st collision.
● Inexact!
● Fast, and handles articulated motion.

Colliding the tessellation only tells you where in the interior
the collision occurred, not when in time, and not even
where the original object was in the sweep when it first
started to collide.

The discrete collision detection algorithm can only report the
position of first collision inside the swept volume, going
from time s_0 to time s_1. What you have to do is
backtrack in time starting from that position, checking for a
discrete collision of the object itself at each step.

Both the tesselation and the backtracking are necessarily
inexact. This introduces errors in both space and time.

However, this approach can be fast enough for interactive
applications, with a caveat. Note that the tessellated mesh
of the swept volume will often contain a lot of triangles, a
good deal more than the original model. This is expensive
to collide, and since it's different at every time step, you
can't precompute a BVH or similar structure to speed
things up. You need a slightly more clever culling approach.

October 31, 2012 Greg Maslov 12

Intuitive Approach: Tessellation

S. Redon et al. (2004). Interactive and Continuous Collision Detection for Avatars in
Virtual Environments

... which is what this paper describes.
Notice that an LSS is a nice shape for constructing the Bounding

Volume Hierarchy (BVH) of a complex articulated model.
Here for example is a robot arm, the bounding LSS of each

component, and one swept LSS during a particular motion.
You can easily imagine sweeping each LSS in turn, hierarchically, to

efficiently find potential collisions between this model and a
cluttered environment. Once you have a small set of potential
collisions, you can then use some other CCD algorithm to locate
the exact collision among the primitive triangles of the robot and
the environment.

That general approach is the subject of the paper cited here. Layers
and layers of culling is the name of the game, and at the bottom
the primitive collision test is essentially an improved version of
Canny's algorithm, which I described earlier.

The overall algorithm is still inexact due to the tessellation culling
step, meaning it could produce false negatives, but it can be tuned
to any desired tolerance.

October 31, 2012 Greg Maslov 13

Adaptive Subdivision

There is another, simpler approach to the continuous collision detection problem, which originated from robotics.
The other algorithms I've described so far all work in Euclidean 3D space, where the location of all your objects

and obstacles are known precisely. In robotics though, you're usually working rather in the N-dimensional
Configuration Space of a robot, and this has the curious property that it's usually extremely difficult to determine
the shape of an obstacle. All you can do is sample discrete points and see if they are or aren't within an
obstacle.

Earlier on I mentioned the LINK query, and the Probabilistic Road Maps algorithm. The question here is to
determine if, and where, the straight segment from point 1 to point 3 here collides with an obstacle. Note that
these are obstacles in C-space.

The usual approach is to just sample a few points in between, and stop when you've had enough - that is, reached
a certain tolerance for minimum width of an obstacle that you might miss.

A better approach would be to know exactly when to stop, so that you're GUARANTEED to have no collisions in
between the points you've checked. That's adaptive subdivision.

An interesting fact is that it's possible to relate distance in configuration space to distance in the workspace. A
single constant, rho, can be determined such that, when considering the straight-line motion between two
configurations q and q', no point on the robot moves farther in the workspace than rho times the distance in
configuration space.

What does that mean in practice? A Cartesian robot, which consists of a single rigid body moving along the x,y,z
axes without rotating, would have a rho of 1: distance in the configuration space is equivalent to distance in the
workspace. A robot with a manipulator arm would have a large rho, because if the arm is stretched out and you
rotate the base even a little bit, you'll produce a huge motion down at the tip.

Now assume that you have a function eta, which gives the closest Euclidean distance that the robot approaches
any obstacles in the workspace when it's in a given configuration q. If the robot is just touching an obstacle, eta
will be zero.

Now you can prove that if this inequality holds, then there CANNOT be any collisions between configurations q and
q'.

Proof: Assume there is a configuration on the line between q and q', where the robot touches an obstacle, and that
the above inequality does hold. Some point on the robot would have to move a distance of at least eta(q) to
reach the obstacle, then at least eta(q') to reach its position at q'. But the earlier result was that NO point on the
robot can move farther than rho-d-q-q'.

Now you don't have to check all of the infinitely many configurations between your first and second position for
collisions. You just have to recursively subdivide and check the midpoints, and this inequality will tell you when
it's guaranteed to be safe to stop.

You can read the paper for details on how to efficiently calculate rho and eta ;-)

October 31, 2012 Greg Maslov 14

Kinetic Data Structures

Kinetic data structures are a more general theory that can be applied to collision
detection in particular.

The basic idea is that the motion of objects within a system can be predicted well
within a short time horizon, but occasionally discrete events occur to upset things.
Such events may be internal to the system, or external user input.

Consider first the problem of keeping the convex hull of a set of points updated as
they move around in the plane. We can calculate the convex hull of a,b,c,d here,
but would rather not re-calculate it at every time step. What we do is choose a set
of so-called certificates -- predicates that, if they are all true, guarantee that the
convex hull of a,b,c,d is still a,b,c.

The converse does NOT have to be true, in general. You could choose an overly-
sensitive certificate that fails without the convex hull being invalid; it'll only result in
a less efficient algorithm.

Now if d moves outside of the triangle, you can see that at least one of these
certificates must fail. Then the convex hull has to be updated and new certificates
chosen.

Note that if we know something about how the points are moving, it's also possible to
predict exactly when any one of the certificates will fail.

The task of the algorithm designer working with kinetic data structures is to choose a
good set of certificates, which guarantee the structure's validity while being small
enough to check efficiently.

Hopefully you can now see how the collision detection problem can be attacked in
this way; instead of the predicate “the convex hull of a,b,c,d is a,b,c”, we might
have the predicate “a,b,c does not collide with d,e,f”; and a well-chosen set of
certificates.

October 31, 2012 Greg Maslov 15

Deformable Models

And now we come to the topic of deformable models.
The algorithm which I've just described makes use of
a good amount of preprocessing and tree-building,
all of which becomes rather moot when you have to
recompute it every time step due to your model
changing shape.

Fortunately, I believe the next speaker today will cover
exactly these issues: Deformable Models.

October 31, 2012 Greg Maslov 16

References

● Swept Ellipsoids: Fauerby, Kasper. (2003). Improved Collision detection and
Response. Online: http://www.peroxide.dk/papers/collision/collision.pdf

● Tessellation of Swept LSS + BVH Culling: Redon, S., Kim, Y. J., Lin, M. C.,
Manocha, D., & Templeman, J. (2004). Interactive and Continuous Collision Detection
for Avatars in Virtual Environments, 117. doi:10.1109/VR.2004.46

● Exact Algebraic CCD: Canny, J. (1986). Collision Detection for Moving Polyhedra.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(2), 200–209.
doi:10.1109/TPAMI.1986.4767773

● Adaptive Subdivision: Schwarzer, F., Saha, M., & Latombe, J.-C. (2002). Exact
Collision Checking Of Robot Paths. WAFR.
http://ai.stanford.edu/~latombe/papers/wafr02/collision.pdf

● Kinetic Data Structures: Guibas, L. (2001). Kinetic Data Structures. In D. P. Mehta &
S. Sahni (Eds.), Handbook of Data Structures and Applications (pp. 23–1--23–18).
Chapman and Hall/CRC.
http://graphics.stanford.edu/projects/lgl/papers/g-KDS_DS-Handbook-04/g-KDS_DS-H
andbook-04.pdf

Hopefully you've now seen a good overview of the
different algorithms that are available for continuous
collision detection.

If you're interested in more details, you should look at
one of these papers. These slides should be made
available on the course website later today.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

