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Outline

 Splitting the Navier-Stokes Equation

 MAC Grid, a staggered grid

 Algorithms details

 Advection

 Add body forces

 Make water incompressible

 From velocity field to water surface



A close look at the Navier-Stokes Equation

 Unknowns:      and    .     is what we want.

 is constrained by the incompressibility term

 Viscosity term could be dropped

 Still too complicated to solve it in one step. It would be 

nice to split it into several steps.
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 Split it into two ODEs

 Solve them sequentially

Dived and Conquer

 A simple example

 Euler Solution
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Splitting the Fluid Equations
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Splitting the Fluid Equations
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Discretization In Space

 MAC Grid (staggered grid)
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 Benefits

 Accurate central

difference

 Downsides

 Variables spread up, 

interpolation needed.



The Disaster of Simple Grid When 

Evaluating the Derivatives

 forward or backward difference

 central difference

 A bad situation of central difference, zero derivative everywhere.
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The Disaster of Simple Grid When 

Evaluating the Derivatives

 forward or backward difference

 central difference

 Staggered grid hands it well
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3D MAC Grid

 For each Cell

 pressure locates at the 

center

 Each component of the 

velocity takes up two faces

 Each face only has one 

component of the velocity, 

interpolation needed.

 Derivatives of velocity at the center of the cell…

 Derivatives of pressure at the center of each facet…



3D MAC Grid

 Interpolate the velocity at the center 

of the cell and its facets.



STEP I: Advect the Velocity
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Advecting Quantities

 The goal is to solve

“the advection equation” for any grid quantity q

 advect each component of velocity separately

 Intead of treating it in Euler fashion by directly solving

we are using Lagrangian notion.

 We’re on an Eulerian grid, though, so the result will be called 

“semi-Lagrangian”.
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Proposed by Jos Stam, “Stable Fluids”, 1999



Semi-Lagrangian Algorithm 

 For each grid point, find 

Xold, and use the quantity 

(of previous time step) at 

this position as the new 

quantity of the grid point.

 Interpolation may be 

necessary. Be careful when 

doing interpolation in 

staggered grid.

 Forward Euler is adequate 

to find the old position.
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Boundary Conditions

 What if the particle 

flies out of the water 

boundary

 due to numeric error, 

just extrapolate from 

nearest points on the 

boundary;

 due to water flowing in 

from outside, …
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Dissipation

 Interpolation cause smoothed velocity field. Small 

vortices will be phased out.

 It equals to simulate a fluid with viscosity.

 Will be covered by the following lecture.



STEP II: Add Body Forces
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Integrating Body Forces

 Supper Easy!!! 

 Just add the new term at each grid point

gtuu advected 
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STEP III: Making Fluid Incompressible
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The Continuous Version

 Space is continuous, but still assume the time space is 
discrete. Update the velocity,

 To make it incompressible, the divergence should be zero.

 Solve Laplace Equation to get p, then substitute p into 
update equation. (Right now, let’s leave out boundary 
conditions, and assume the water is boundless.)
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Laplace Equation



The Discrete Version

 For clarity, discretize the pressure equation and the 

divergence constraint instead.
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The Discrete Version
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Substitute left equations into the right one



Putting Them In Matrix-Vector Form
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 Represent p of all the cells as a linear vector. Write all 
the linear equations into a matrix-vector form

 Each cell has such a linear equation, combining them 
together we could get p at each cell.

dp A
 A is a huge matrix. In a 

NxNxN grid, A is a N3xN3

matrix. 

 100x100x100 grid 

results in a matrix with 

1012 elements.

 A is sparse.



Boundary Conditions

 At cell(i,j,k), the pressures from its 6 neighboring cells are needed. What if 

the its neighboring cell is not Fluid?

 At boundary cells, some modifications on the linear equation are needed.

 Each cell is either Fluid, Solid, or Empty. Since water is moving, thus the 

property of a cell may change (From a Empty to Fluid, or opposite) during 

simulating.
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Empty Cell

 Assume the pressure of the 

Empty Cell is zero

 For example, if cell(i+1, j, k) is 

empty, then the linear 

equation at cell(i, j, k) should 

be:

EF
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Solid Cell

 The assumption

 The water do not penetrate the 

solid, thus

 If right neighboring cell (i+1,j,k) of 

cell(i, j,k) is Solid,
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Modification on Laplace Equation
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Summary
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Advection/Transportation

Body Forces

Pressure/Incompressiblity
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Where is the Water?

 Marker particles

 initially each Fluid cell in the MAC grid will be allocated N 

particles (e.g. N = 4). 

 Move particles in the incompressible velocity field

 update cell properties (the cell contains any particles is marked 

as Fluid).

 From particles to Water surface

 Implicit function: f(x) = distance to the nearest particle – r

 Sample f(x) with a high resolution grid.

 Marching Cube to find Iso-surface



Water and Level Sets

 Represent the surface using an implicit function

 One popular choice: Signed Distance Function

 Distance to the nearest point on the surface

 Positive outside, negative inside.

 Some nice properties:

 Evolution of this function: advection

 Above properties may not be preserved. Periodically 

recalculate the distance function.



Reference

 More details on Level Sets:

 Book: “Level Set Methods and Dynamic Implicit Surface” by 
Stanley Osher and Ronald Fedkiw.

 A nice overview on Fluid Simulation

 SIGGRAPH 2007 Course Notes, “Fluid Simulation” by Robert 
Bridson and Matthias Muller-Fischer.

 Libraries to Solve Sparse Linear System

 SparseLib: http://math.nist.gov/sparselib++/

 PARDISO or IML (Intel Mathematic Library).

 Surface Reconstruction

 Marching Cube, 
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/

 Poisson Surface Reconstruction, http://www.cs.jhu.edu/~misha/

http://math.nist.gov/sparselib++/
http://math.nist.gov/sparselib++/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
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Thanks!


