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Outline

 Splitting the Navier-Stokes Equation

 MAC Grid, a staggered grid

 Algorithms details

 Advection

 Add body forces

 Make water incompressible

 From velocity field to water surface



A close look at the Navier-Stokes Equation

 Unknowns:      and    .     is what we want.

 is constrained by the incompressibility term

 Viscosity term could be dropped

 Still too complicated to solve it in one step. It would be 

nice to split it into several steps.
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 Split it into two ODEs

 Solve them sequentially

Dived and Conquer

 A simple example

 Euler Solution

dq

dt
 f (q) g(q)
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Splitting the Fluid Equations
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Advection/Transportation

Body Forces

Pressure/Incompressiblity



Splitting the Fluid Equations
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Discretization In Space

 MAC Grid (staggered grid)
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 Benefits

 Accurate central

difference

 Downsides

 Variables spread up, 

interpolation needed.



The Disaster of Simple Grid When 

Evaluating the Derivatives

 forward or backward difference

 central difference

 A bad situation of central difference, zero derivative everywhere.
u
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The Disaster of Simple Grid When 

Evaluating the Derivatives

 forward or backward difference

 central difference

 Staggered grid hands it well
u
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3D MAC Grid

 For each Cell

 pressure locates at the 

center

 Each component of the 

velocity takes up two faces

 Each face only has one 

component of the velocity, 

interpolation needed.

 Derivatives of velocity at the center of the cell…

 Derivatives of pressure at the center of each facet…



3D MAC Grid

 Interpolate the velocity at the center 

of the cell and its facets.



STEP I: Advect the Velocity
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Advecting Quantities

 The goal is to solve

“the advection equation” for any grid quantity q

 advect each component of velocity separately

 Intead of treating it in Euler fashion by directly solving

we are using Lagrangian notion.

 We’re on an Eulerian grid, though, so the result will be called 

“semi-Lagrangian”.
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Proposed by Jos Stam, “Stable Fluids”, 1999



Semi-Lagrangian Algorithm 

 For each grid point, find 

Xold, and use the quantity 

(of previous time step) at 

this position as the new 

quantity of the grid point.

 Interpolation may be 

necessary. Be careful when 

doing interpolation in 

staggered grid.

 Forward Euler is adequate 

to find the old position.
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Boundary Conditions

 What if the particle 

flies out of the water 

boundary

 due to numeric error, 

just extrapolate from 

nearest points on the 

boundary;

 due to water flowing in 

from outside, …
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Dissipation

 Interpolation cause smoothed velocity field. Small 

vortices will be phased out.

 It equals to simulate a fluid with viscosity.

 Will be covered by the following lecture.



STEP II: Add Body Forces
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Integrating Body Forces

 Supper Easy!!! 

 Just add the new term at each grid point
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STEP III: Making Fluid Incompressible
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The Continuous Version

 Space is continuous, but still assume the time space is 
discrete. Update the velocity,

 To make it incompressible, the divergence should be zero.

 Solve Laplace Equation to get p, then substitute p into 
update equation. (Right now, let’s leave out boundary 
conditions, and assume the water is boundless.)
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The Discrete Version

 For clarity, discretize the pressure equation and the 

divergence constraint instead.
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The Discrete Version
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Putting Them In Matrix-Vector Form
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 Represent p of all the cells as a linear vector. Write all 
the linear equations into a matrix-vector form

 Each cell has such a linear equation, combining them 
together we could get p at each cell.

dp A
 A is a huge matrix. In a 

NxNxN grid, A is a N3xN3

matrix. 

 100x100x100 grid 

results in a matrix with 

1012 elements.

 A is sparse.



Boundary Conditions

 At cell(i,j,k), the pressures from its 6 neighboring cells are needed. What if 

the its neighboring cell is not Fluid?

 At boundary cells, some modifications on the linear equation are needed.

 Each cell is either Fluid, Solid, or Empty. Since water is moving, thus the 

property of a cell may change (From a Empty to Fluid, or opposite) during 

simulating.
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Empty Cell

 Assume the pressure of the 

Empty Cell is zero

 For example, if cell(i+1, j, k) is 

empty, then the linear 

equation at cell(i, j, k) should 

be:

EF

= 0



Solid Cell

 The assumption

 The water do not penetrate the 

solid, thus

 If right neighboring cell (i+1,j,k) of 

cell(i, j,k) is Solid,
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Modification on Laplace Equation
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Summary
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Advection/Transportation

Body Forces

Pressure/Incompressiblity
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Where is the Water?

 Marker particles

 initially each Fluid cell in the MAC grid will be allocated N 

particles (e.g. N = 4). 

 Move particles in the incompressible velocity field

 update cell properties (the cell contains any particles is marked 

as Fluid).

 From particles to Water surface

 Implicit function: f(x) = distance to the nearest particle – r

 Sample f(x) with a high resolution grid.

 Marching Cube to find Iso-surface



Water and Level Sets

 Represent the surface using an implicit function

 One popular choice: Signed Distance Function

 Distance to the nearest point on the surface

 Positive outside, negative inside.

 Some nice properties:

 Evolution of this function: advection

 Above properties may not be preserved. Periodically 

recalculate the distance function.



Reference

 More details on Level Sets:

 Book: “Level Set Methods and Dynamic Implicit Surface” by 
Stanley Osher and Ronald Fedkiw.

 A nice overview on Fluid Simulation

 SIGGRAPH 2007 Course Notes, “Fluid Simulation” by Robert 
Bridson and Matthias Muller-Fischer.

 Libraries to Solve Sparse Linear System

 SparseLib: http://math.nist.gov/sparselib++/

 PARDISO or IML (Intel Mathematic Library).

 Surface Reconstruction

 Marching Cube, 
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/

 Poisson Surface Reconstruction, http://www.cs.jhu.edu/~misha/
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Thanks!


