Introduction to Water Simulation II ---Numerical Solution

Outline

- Splitting the Navier-Stokes Equation
- MAC Grid, a staggered grid
- Algorithms details
- Advection
- Add body forces
- Make water incompressible
- From velocity field to water surface

A close look at the Navier-Stokes Equation

$$
\begin{array}{rlrl}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}+\frac{1}{\rho} \nabla p & =\vec{g}+\nu \nabla \cdot \nabla \vec{u} \\
\frac{D u}{D t} & \nabla \cdot \vec{u} & =0
\end{array}
$$

- Unknowns: \vec{u} and $p . \vec{u}$ is what we want.
- p is constrained by the incompressibility term
- Viscosity term could be dropped
- Still too complicated to solve it in one step. It would be nice to split it into several steps.

A close look at the Navier-Stokes Equation

$$
\begin{aligned}
\frac{D \vec{u}}{D t}+\frac{1}{\rho} \nabla p & =\vec{g} \\
\nabla \cdot \vec{u} & =0
\end{aligned}
$$

- Unknowns: \vec{u} and $p . \vec{u}$ is what we want.
- p is constrained by the incompressibility term
- Viscosity term could be dropped
- Still too complicated to solve it in one step. It would be nice to split it into several steps.

Dived and Conquer

- A simple example

$$
\frac{d q}{d t}=f(q)+g(q)
$$

- Euler Solution

$$
q^{n+1}=q^{n}+\Delta t[f(q)+g(q)]
$$

- Split it into two ODEs

$$
\begin{aligned}
& \frac{d q}{d t}=f(q) \\
& \frac{d q}{d t}=g(q)
\end{aligned}
$$

- Solve them sequentially

$$
\begin{aligned}
\tilde{q} & =q^{n}+\Delta t f\left(q^{n}\right) \\
q^{n+1} & =\tilde{q}+\Delta \operatorname{tg}(\tilde{q})
\end{aligned}
$$

Splitting the Fluid Equations

$$
\begin{array}{r}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}+\frac{1}{\rho} \nabla p=\vec{g} \\
f_{1}(\vec{u}) \quad f_{3}(\vec{u})
\end{array}
$$

$$
\begin{array}{cc}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}=0 & \square \frac{D \vec{u}}{D t}=0
\end{array} \begin{array}{cc}
\text { Advection/Transportation } \\
\frac{\partial \vec{u}}{\partial t}=\vec{g} & \text { Body Forces }
\end{array}
$$

$$
\frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0
$$

$$
\text { s.t. } \quad \nabla \cdot \vec{u}=0
$$

Splitting the Fluid Equations

$$
\begin{gathered}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}+\frac{1}{\rho} \nabla p=\vec{g} \\
f_{1}^{\prime \prime}(\vec{u}) \quad f_{3}^{\prime \prime}(\vec{u}) \quad f_{2}^{\prime \prime}(\vec{u})
\end{gathered}
$$

- Start with an initial divergence-free velocity field $\vec{u}^{(0)}$.
- For time step $n=0,1,2, \ldots$
- Determine a good time step Δt to go from time t_{n} to time t_{n+1}
- Set $\vec{u}^{A}=\operatorname{advect}\left(\vec{u}^{n}, \Delta t, \vec{u}^{n}\right)$

$$
\begin{gathered}
\frac{D \vec{u}}{D t}=0 \\
\frac{\partial \vec{u}}{\partial t}=\vec{g} \\
\frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \quad \text { s.t. } \quad \nabla \cdot \vec{u}=0
\end{gathered}
$$

- Add $\vec{u}^{B}=\vec{u}^{A}+\Delta t \vec{g}$
- Set $\vec{u}^{n+1}=\operatorname{project}\left(\Delta t, \vec{u}^{B}\right)$

Discretization In Space

- MAC Grid (staggered grid)

- Benefits
- Accurate central difference
- Downsides
- Variables spread up, interpolation needed.

The Disaster of Simple Grid When Evaluating the Derivatives

- forward or backward difference

$$
\left(\frac{\partial q}{\partial x}\right)_{i} \approx \frac{q_{i+1}-q_{i}}{\Delta x}
$$

- central difference

$$
\left(\frac{\partial q}{\partial x}\right)_{i} \approx \frac{q_{i+1}-q_{i-1}}{2 \Delta x}
$$

- A bad situation of central difference, zero derivative everywhere.

The Disaster of Simple Grid When Evaluating the Derivatives

- forward or backward difference

$$
\left(\frac{\partial q}{\partial x}\right)_{i} \approx \frac{q_{i+1}-q_{i}}{\Delta x}
$$

- central difference

$$
\left(\frac{\partial q}{\partial x}\right)_{i} \approx \frac{q_{i+1}-q_{i-1}}{2 \Delta x}
$$

- Staggered grid hands it well

3D MAC Grid

- For each Cell
- pressure locates at the center
- Each component of the velocity takes up two faces
- Each face only has one component of the velocity, interpolation needed.
- Derivatives of velocity at the center of the cell...
- Derivatives of pressure at the center of each facet...

3D MAC Grid

- Interpolate the velocity at the center of the cell and its facets.

$$
\left.\begin{array}{rl}
\vec{u}_{i, j, k} & =\left(\begin{array}{lll}
\frac{u_{i-1 / 2, j, k}+u_{i+1 / 2, j, k}}{2}, & \frac{v_{i, j-1 / 2, k}+v_{i, j+1 / 2, k}}{2}, & \frac{w_{i, j, k-1 / 2}+w_{i, j, k+1 / 2}}{2}
\end{array}\right) \\
\vec{u}_{i+1 / 2, j, k} & =\left(\begin{array}{cc}
v_{i, j-1 / 2, k}+v_{i, j+1 / 2, k} \\
u_{i+1 / 2, j, k}, & \frac{+v_{i+1, j-1 / 2, k}+v_{i+1, j+1 / 2, k}}{4},
\end{array}\right. \\
\vec{u}_{i, j+1 / 2, k-1 / 2}+w_{i, j, k+1 / 2} \\
& \frac{+w_{i+1, j, k-1 / 2}+w_{i+1, j, k+1 / 2}}{4}
\end{array}\right)
$$

STEP I: Advect the Velocity

$$
\begin{gathered}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}=0 \quad \text { or } \quad \frac{D \vec{u}}{D t}=0 \\
\frac{\partial \vec{u}}{\partial t}=\vec{g} \\
\frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \quad \text { s.t. } \quad \nabla \cdot \vec{u}=0
\end{gathered}
$$

Advecting Quantities

- The goal is to solve

$$
\frac{D q}{D t}=0
$$

"the advection equation" for any grid quantity q

- advect each component of velocity separately
- Intead of treating it in Euler fashion by directly solving

$$
\frac{\partial q}{\partial t}+u \frac{\partial q}{\partial x}=0
$$

we are using Lagrangian notion.

- We're on an Eulerian grid, though, so the result will be called "semi-Lagrangian".

Proposed by Jos Stam, "Stable Fluids", I 999

Semi-Lagrangian Algorithm

- For each grid point, find Xold, and use the quantity (of previous time step) at this position as the new quantity of the grid point.
- Interpolation may be necessary. Be careful when doing interpolation in staggered grid.
- Forward Euler is adequate to find the old position.

$$
\vec{x}_{q}=\vec{x}_{p}-\Delta t \vec{u}_{p}
$$

Boundary Conditions

, What if the particle flies out of the water boundary

- due to numeric error, just extrapolate from nearest points on the boundary;
- due to water flowing in from outside, ...

Dissipation

- Interpolation cause smoothed velocity field. Small vortices will be phased out.
- It equals to simulate a fluid with viscosity.
- Will be covered by the following lecture.

STEP II: Add Body Forces

$$
\begin{aligned}
& \frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}=0 \quad \text { or } \quad \frac{D \vec{u}}{D t}=0 \\
& \frac{\partial \vec{u}}{\partial t}=\vec{g} \\
& \frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \quad \text { s.t. } \quad \nabla \cdot \vec{u}=0
\end{aligned}
$$

Integrating Body Forces

- Supper Easy!!!
- Just add the new term at each grid point

$$
\vec{u}^{*}=\vec{u}^{\text {advected }}+\Delta t \vec{g}
$$

STEP III: Making Fluid Incompressible

$$
\begin{gathered}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}=0 \quad \text { or } \quad \frac{D \vec{u}}{D t}=0 \\
\frac{\partial \vec{u}}{\partial t}=\vec{g} \\
\frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \quad \text { s.t. } \quad \nabla \cdot \vec{u}=0
\end{gathered}
$$

The Continuous Version

$$
\begin{aligned}
& \frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \\
& \text { s.t. } \quad \nabla \cdot \vec{u}=0
\end{aligned}
$$

- Space is continuous, but still assume the time space is discrete. Update the velocity,

$$
\vec{u}^{n+1}=\vec{u}^{*}-\frac{\Delta t}{\rho} \nabla p
$$

- To make it incompressible, the divergence should be zero.

$$
\begin{aligned}
& \nabla \cdot\left(\vec{u}^{*}-\frac{\Delta t}{\rho} \nabla p\right)=0 \\
& -\frac{\Delta t}{\rho} \nabla \cdot \nabla p=-\nabla \cdot \vec{u}^{*} \quad \text { Laplace Equation }
\end{aligned}
$$

- Solve Laplace Equation to get p, then substitute p into update equation. (Right now, let's leave out boundary conditions, and assume the water is boundless.)

The Discrete Version

$$
\begin{aligned}
& \frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \\
& \text { s.t. } \quad \nabla \cdot \vec{u}=0
\end{aligned}
$$

- For clarity, discretize the pressure equation and the divergence constraint instead.

discretize $\vec{u}^{n+1}=\vec{u}^{*}-\frac{\Delta t}{\rho} \nabla p$	discretize $\nabla \cdot \vec{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$
$u_{i+1 / 2, j, k}^{n+1}=u_{i+1 / 2, j, k}-\Delta t \frac{1}{\rho} \frac{p_{i+1, j, k}-p_{i, j, k}}{\Delta x}$	$(\nabla \cdot \vec{u})_{i, j, k} \approx \frac{u_{i+1 / 2, j, k}-u_{i-1 / 2, j, k}}{\Delta x}+$
$v_{i, j+1 / 2, k}^{n+1}=v_{i, j+1 / 2, k}-\Delta t-\frac{1}{\rho} \frac{p_{i, j+1, k}-p_{i, j, k}}{\Delta x}$	$\frac{v_{i, j+1 / 2, k}-v_{i, j-1 / 2, k}}{\Delta x}+$
$w_{i, j, k+1 / 2}^{n+1}=w_{i, j, k+1 / 2}-\Delta t \frac{1}{\rho} \frac{p_{i, j, k+1}-p_{i, j, k}}{\Delta x}$	$\frac{w_{i, j, k+1 / 2}-w_{i, j, k-1 / 2}}{\Delta x}$

The Discrete Version

$\frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0$
s.t. $\quad \nabla \cdot \vec{u}=0$

discretize $\vec{u}^{n+1}=\vec{u}^{*}-\frac{\Delta t}{\rho} \nabla p$	discretize $\nabla \cdot \vec{u}=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$
$u_{i+1 / 2, j, k}^{n+1}=u_{i+1 / 2, j, k}-\Delta t \frac{1}{\rho} \frac{p_{i+1, j, k}-p_{i, j, k}}{\Delta x}$	$(\nabla \cdot \vec{u})_{i, j, k} \approx \frac{u_{i+1 / 2, j, k}-u_{i-1 / 2, j, k}}{\Delta x}+$
$v_{i, j+1 / 2, k}^{n+1}=v_{i, j+1 / 2, k}-\Delta t \frac{1}{\rho} \frac{p_{i, j+1, k}-p_{i, j, k}}{\Delta x}$	
$w_{i, j, k+1 / 2}^{n+1}=w_{i, j, k+1 / 2}-\Delta t \frac{1}{\rho} \frac{p_{i, j, k+1}-p_{i, j, k}}{\Delta x}$	$\frac{v_{i, j+1 / 2, k}-v_{i, j-1 / 2, k}}{\Delta x}+$

Substitute left equations into the right one
$\frac{\Delta t}{\rho}\left(\frac{\left.\begin{array}{c}6 p_{i, j, k}-p_{i+1, j, k}-p_{i, j+1, k}-p_{i, j, k+1} \\ -p_{i-1, j, k}-p_{i, j-1, k}-p_{i, j, k-1} \\ \Delta x^{2}\end{array}\right)=-\binom{\frac{u_{i+1 / 2, j, k}-u_{i-1 / 2, j, k}}{\Delta x}+\frac{v_{i, j+1 / 2, k}-v_{i, j-1 / 2, k}}{\Delta x}}{+\frac{w_{i, j, k+1 / 2}-w_{i, j, k-1 / 2}}{\Delta x}}}{}\right.$

$$
-\frac{\Delta t}{\rho} \nabla \cdot \nabla p=-\nabla \cdot \vec{u}^{*}
$$

Putting Them In Matrix-Vector Form

- Each cell has such a linear equation, combining them together we could get p at each cell.

$$
\frac{\Delta t}{\rho}\left(\begin{array}{c}
6 p_{i, j, k}-p_{i+1, j, k}-p_{i, j+1, k}-p_{i, j, k+1} \\
-p_{i-1, j, k}-p_{i, j-1, k}-p_{i, j, k-1} \\
\Delta x^{2}
\end{array}\right)=-\binom{\frac{u_{i+1 / 2, j, k}-u_{i-1 / 2, j, k}}{\Delta x}+\frac{v_{i, j+1 / 2, k}-v_{i, j-1 / 2, k}}{\Delta x}}{+\frac{w_{i, j, k+1 / 2}-w_{i, j, k-1 / 2}}{\Delta x}}
$$

- Represent p of all the cells as a linear vector.Write all the linear equations into a matrix-vector form

- A is a huge matrix. In a $N_{x N} \times N$ grid, A is a $N^{3} \times N^{3}$ matrix.
- $100 x 100 x 100$ grid results in a matrix with 10^{12} elements.
- A is sparse.

Boundary Conditions

$$
\frac{\Delta t}{\rho}\left(\begin{array}{r}
6 p_{i, j, k}-p_{i+1, j, k}-p_{i, j+1, k}-p_{i, j, k+1} \\
-p_{i-1, j, k}-p_{i, j-1, k}-p_{i, j, k-1} \\
\Delta x^{2}
\end{array}\right)=-\binom{\frac{u_{i+1 / 2, j, k}-u_{i-1 / 2, j, k}}{\Delta x}+\frac{v_{i, j+1 / 2, k}-v_{i, j-1 / 2, k}}{\Delta x}}{+\frac{w_{i, j, k+1 / 2}-w_{i, j, k-1 / 2}}{\Delta x}}
$$

- At cell(i,j,k), the pressures from its 6 neighboring cells are needed. What if the its neighboring cell is not Fluid?
- At boundary cells, some modifications on the linear equation are needed.
- Each cell is either Fluid, Solid, or Empty. Since water is moving, thus the property of a cell may change (From a Empty to Fluid, or opposite) during simulating.

Empty Cell

- Assume the pressure of the Empty Cell is zero
- For example, if cell($(\mathrm{i}+\mathrm{l}, \mathrm{j}, \mathrm{k})$ is empty, then the linear
 equation at cell(i, $\mathrm{j}, \mathrm{k})$ should be:

$$
\begin{gathered}
\mathbf{0} \\
\frac{\Delta t}{\rho}\left(\begin{array}{c}
6 p_{i, j, k}-p_{i+1, j, k}-p_{i, j+1, k}-p_{i, j, k+1} \\
-p_{i-1, j, k}-p_{i, j-1, k}-p_{i, j, k-1} \\
\Delta x^{2}
\end{array}\right)=-\binom{\frac{u_{i+1 / 2, j, k}-u_{i-1 / 2, j, k}}{\Delta x}+\frac{v_{i, j+1 / 2, k}-v_{i, j-1 / 2, k}}{\Delta x}}{+\frac{w_{i, j, k+1 / 2}-w_{i, j, k-1 / 2}}{\Delta x}}
\end{gathered}
$$

Solid Cell

- The assumption
- The water do not penetrate the solid, thus

$$
\vec{u} \cdot \hat{n}=\vec{u}_{\text {solid }} \cdot \hat{n}
$$

- If right neighboring cell (i+l,j,k) of cell($\mathrm{i}, \mathrm{j}, \mathrm{k}$) is Solid,

\[

\]

Modification on Laplace Equation

$$
p_{i+1, j}=p_{i, j}+\frac{\rho \Delta x}{\Delta t}\left(u_{i+1 / 2, j}-u_{\mathrm{solid}}\right)
$$

Summary

$$
\begin{gathered}
\frac{\partial \vec{u}}{\partial t}+\vec{u} \cdot \nabla \vec{u}+\frac{1}{\rho} \nabla p=\vec{g} \\
f_{1}(\vec{u}) \quad f_{3}(\vec{u}) \quad f_{2}^{\prime \prime}(\vec{u}) \\
\frac{D \vec{u}}{D t}=0 \\
\text { Advection/Transportation } \\
\frac{\partial \vec{u}}{\partial t}=\vec{g} \quad \text { Body Forces } \\
\frac{\partial \vec{u}}{\partial t}+\frac{1}{\rho} \nabla p=0 \\
\text { s.t. } \nabla \cdot \vec{u}=0
\end{gathered}
$$

$$
\vec{u}^{*}=\vec{u}^{\text {advected }}+\Delta t \vec{g}
$$

$$
\begin{gathered}
\mathbf{A} p=d \\
\vec{u}^{n+1}=\vec{u}^{*}-\frac{\Delta t}{\rho} \nabla p
\end{gathered}
$$

Where is the Water?

- Marker particles
- initially each Fluid cell in the MAC grid will be allocated N particles (e.g. $\mathrm{N}=4$).
- Move particles in the incompressible velocity field
- update cell properties (the cell contains any particles is marked as Fluid).
- From particles to Water surface
- Implicit function: $f(x)=$ distance to the nearest particle $-r$
- Sample $f(x)$ with a high resolution grid.
- Marching Cube to find Iso-surface

Water and Level Sets

- Represent the surface using an implicit function

$$
\{\vec{x} \quad \mid \quad \phi(\vec{x})=0\}
$$

* One popular choice: Signed Distance Function
- Distance to the nearest point on the surface
- Positive outside, negative inside.
, Some nice properties:

$$
\begin{gathered}
\nabla \phi \cdot \hat{n}=1 \\
\hat{n}=\nabla \phi
\end{gathered}
$$

- Evolution of this function: advection

$$
\frac{D \phi}{D t}=0
$$

- Above properties may not be preserved. Periodically recalculate the distance function.

Reference

- More details on Level Sets:
- Book:"Level Set Methods and Dynamic Implicit Surface" by Stanley Osher and Ronald Fedkiw.
- A nice overview on Fluid Simulation
- SIGGRAPH 2007 Course Notes, "Fluid Simulation" by Robert Bridson and Matthias Muller-Fischer.
- Libraries to Solve Sparse Linear System
- SparseLib: http://math.nist.gov/sparselib++/
- PARDISO or IML (Intel Mathematic Library).
- Surface Reconstruction
- Marching Cube,
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
- Poisson Surface Reconstruction, http://www.cs.jhu.edu/~misha/

Thanks!

