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Outline

» Splitting the Navier-Stokes Equation
» MAC Grid, a staggered grid
» Algorithms details

Advection
Add body forces

Make water incompressible

» From velocity field to water surface



A close look at the Navier-Stokes Equation

ou 1
L d-Vi+ —-Vp=g+vV - -Vu
ot 0

b V=0

Dt

» Unknowns: 7 and P. U is what we want.
» P is constrained by the incompressibility term
» Viscosity term could be dropped

» Still too complicated to solve it in one step. It would be
nice to split it into several steps.



A close look at the Navier-Stokes Equation
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» Still too complicated to solve it in one step. It would be
nice to split it into several steps.



Dived and Conquer

» A simple example

d
;3 = f(q)+g(q)

» Euler Solution

9" =q" +At[f(q)+ g(q)]

» Split it into two ODEs

» Solve them sequentially

q=q"+ Atf(¢")
" = G+ Atg(q)



Splitting the Fluid Equations

ou
— 4+ u-Vu-+ Vp
ot 0
I I I
ou . Di
5 +4-Vd =0 mmp T Advection/Transportation
> ou
a9 Body Forces
y ou 1
En + EVP = Pressure/Incompressiblity



Splitting the Fluid Equations

ou
E—i—u Vu+pr

e Start with an initial divergence-free velocity field u'V).

e Fortimestepn =20,1,2,...
e Determine a good time step At to go from time ¢,, to time ¢,
o Set 7 = advect (@", At,
o Add @P =u + Atg o=
e Seti"t! = project(At, u?) GtV =0 st Vea=0

) Du



Discretization In Space
» MAC Grid (staggered grid) » Benefits

» Accurate central
o difference

Pi i
@)

» Downsides

» Variables spread up,
interpolation needed.




The Disaster of Simple Grid When
Evaluating the Derivatives

» forward or backward difference

@ o Litl — 4
dx ), Ax

» central difference

@ o Litl — i1
ox ), 2Ax

» A bad situation of central difference, zero derivative everywhere.
u

|



The Disaster of Simple Grid When
Evaluating the Derivatives

» forward or backward difference

@ o Litl — 4
dx ), Ax

» central difference

@ o Litl — i1
ox ), 2Ax

» Staggered grid hands it well
u




3D MAC Grid

I » For each Caell

Ui j+1/2.k

pressure locates at the
center

Pijk Uit1/2.5.k

. . - Each component of the
ﬁ - velocity takes up two faces

Each face only has one
component of the velocity,
interpolation needed.

» Derivatives of velocity at the center of the cell...

» Derivatives of pressure at the center of each facet...



3D MAC Grid

Vi j41/2.k
por | ey » Interpolate the velocity at the center
Wi j,k+1/2 3
/ of the cell and its facets.
L Uik T Wipt25k  Vig-1/2k T Uigri2k Wigk—1/2 T Wijki1)/2
ui,j,k — 9 y 9 3 9
! Vij—1/2,k T Vij+1/2.k Wi jk—1/2 + Wi j k+1/2
_, TUi41,j-1/2.k T Vit1,j+1/2,k FWi1 jk—1/2 F Wit jkt1/2
Wir1/25.k = | Wit1/2,5.k> 1 : 1
U172k T Wit1/25.k Wi jk—1/2 T Wi jk+1/2
. TU—1/2, 541,k T Wit1/2 j4+1.k Wi 1 k—1/2 T Wijt1k+1/2
Wi j41/2.k = 1 v Vig41/2.ks 1
WUi—1/2.5k + Wit1/2,jk Vij—1/2,k T Vij+1/2.k
_ TU—1/2, 5 k+1 T Uit1/2,5k+1 TVi j—1/2,k+1 T Vi j+1/2k+1
ui,j,k+1/2 — A s 1 s u;i’j=k+1/2




ST

P I: Advect the Velocity

ou ., Dil
E—FU-V’U,—O or E:o
ou
ot 7
ou 1

— 4+ -Vp=0 s.t. U=
(,%—I-pr st. V-u=0




Advecting Quantities

» The goal is to solve
goal is to solv Dy
T _9
Dt

“the advection equation” for any grid quantity q

» advect each component of velocity separately

» Intead of treating it in Euler fashion by directly solving

dq ~ 0q

we are using Lagrangian notion.

» We're on an Eulerian grid, though, so the result will be called
“semi-Lagrangian”.

Proposed by Jos Stam,“Stable Fluids”, 1999



Semi-Lagrangian Algorithm

» For each grid point, find
Xeld and use the quantity
(of previous time step) at
this position as the new
quantity of the grid point.

» Interpolation may be
necessary. Be careful when

doing interpolation in
staggered grid.

» Forward Euler is adequate
to find the old position.

Xq = X, —AtuID



Boundary Conditions

» What if the particle
flies out of the water
boundary

due to numeric error,
just extrapolate from

nearest points on the
boundary;

due to water flowing in
from outside, ...



Dissipation
» Interpolation cause smoothed velocity field. Small
vortices will be phased out.

» It equals to simulate a fluid with viscosity.

» Will be covered by the following lecture.



ST

P II: Add Body Forces

ou ., Dil
) E—FU-V’U,—O or E:o
ou
4 —=q
ot I
y oOu 1

— 4+ -Vp=0 s.t. U=
(,%—I-pr st. V-u=0



Integrating Body Forces

» Supper Easy!!!
» Just add the new term at each grid point

ok

0 = u»advected i Atg»



STEP III: Making Fluid Incompressible

ou ., Dil
) E—FU-V’U,—O or E:o
ou
4 — =g
ot I
y oOu 1

— 4+ -Vp=0 s.t. ‘U=
(,%—I-pr st. V-u=0




ou 1
T TUp =0
o + pr

st. V-u=0
» Space is continuous, but still assume the time space is
discrete. Update the velocity,
—Nn+1 = At

0" =0 ——Vp
yo,

» To make it incompressible, the divergence should be zero.

The Continuous Version

_x A
V- - At Vp)=0
Yo,
At _x
— ; V-Vp=-V-Uu Laplace Equation

» Solve Laplace Equation to get p, then substitute p into
update equation. (Right now, let’s leave out boundary
conditions, and assume the water is boundless.)



ZZL + IVp =0
The Discrete Version - v- =_ 0

» For clarity, discretize the pressure equation and the
divergence constraint instead.

— _* At au 8v Bw _
discretize G"~ =0 ——Vp discretize V.= 7o+ 20+ 57 =0
yo,
L pivi1jk — Pijk S Wit1/2,5k — Yi=1/2,5k
un—l—l A= 1+1,7, s (V u) LA n
z+1/23k Wit1/2,5.k P A i, ) A_?U. |
Un_.'_l =V ii1/9 k= At= 1 Pij+1.k — Pijk %J‘H/Q,kAaj i,5—1/2k I
i,j+1/2.k i,j+1/ 0 A.’,U . v
nt1 Ay Pigkt1 — Pijik bakt1/2 — Tigk—1/2
wzgk—i—l/? ij—i—l/Q - P A Ax

Pijk Uit1/2,5.k
L] *—
Wi j,k+1/2




ou 1
+ Vp =0
. . ot
The Discrete Version v =0
S.t. u =
— * At 8’115 8v 8?1] _
discretize 0" =0 ——Vp discretize V-i— -+ o 9 0
yo,
Lp . S Wit1/2,5,k — Wi=1/2,5k
TL+1 t+]—5] k p%,j,k ~
uz—i—l/Q,j g Wit1/25k — Atp Ax (v U) i,k Az +
V; i — Vi i
S AL PidtLk ~ Pigik Litl/2k — i —1/2k
ij+1/2,k — Yig+1/2k P Ax Ax
w. . JR— w . _
wn+1 . B Atlp@,j,k+l — p'l,j,k’ Z)J)k"‘l/zA Zyjﬁk 1/2
ighr1/2 = Wijk+1/2 P Ar x
‘Substitute left equations into the right one
Opi gk — Pit1jk — Pij+lk — Pijk+1 Wit /2.4k — Wi1 2k . Vi1 2k = Vii—1/2k
At — Pi-ljk — Pij-Lk —Pijk-1 | Ar Ar
P Az? N N Wi j kb 1/2 — Wi jh—1/2
Az
At o
[ V . Vp — —V . u



Putting Them In Matrix-Vector Form

» Each cell has such a linear equation, combining them
together we could get p at each cell.

Opijk — Pit1jk — Pijtlhk — Pijktl

At

— Pi—14k — Pij—1k — Pijk—1

P

R

Az?

-1 6

—1 ...

Ax

Wit1/2,5,k — Wi—1/2,4.k
/ / 4
+

» Represent p of all the cells as a linear vector.Write all
the linear equations into a matrix-vector form

Az

Pi_1jx
Pij-1x
Pijk-1
P«
Pkt

Pij1x

Pis1jx

Vi j+1/2,k — Vij—1/2.k
Wi g k+1/2 — Wi k—1/2

Ax

=|V-Uu

Ap=d
» Ais a huge matrix.In a
NxNxN grid,A is a N3xN3
matrix.

» 100x100x100 grid
results in a matrix with
10'2 elements.

» A s sparse.



Boundary Conditions

Opijk — Pit1gk — Pig+1k — Pigjk+1 Uis1/2 ik — Uis1/2jk . Vi a1/ok — Vijo1/2h

P Ax? Wi g kt1/2 — Wijk—1/2
-
Ax

» At cell(i,j,k), the pressures from its 6 neighboring cells are needed.What if
the its neighboring cell is not Fluid?

» At boundary cells, some modifications on the linear equation are needed.

» Each cell is either Fluid, Solid, or Empty. Since water is moving, thus the

property of a cell may change (From a Empty to Fluid, or opposite) during
simulating.




Empty Cell

» Assume the pressure of the

Empty Cell is zero

» For example, if cell(i+1, j, k) is E
empty, then the linear
equation at cell(i, j, k) should
be:
0
1|
Opijk — Pitlghk — Pij+1k — Pijk+1 Wistjo gk — Wis1/2 5k  Vija1/2k — Vij1/2.k
At — Pic1,jk — Pij—1.k — Pijk—1 B Axr T Ar
P Az? N Wy ht1/2 — Wi k—1/2
Ax



Solid Cell

» The assumption

» The water do not penetrate the
solid, thus

U -1 = Usolid * 1
» If right neighboring cell (i+1,j,k) of
cell(i, j,k) is Solid,

1 Pi+1.7 — Pi.j —n+1 * At
n—+1 A 5 ) _ n+ V
Ui +1/2,j = Ujq 1/2,5 — t— JA J u = U p
P €T p
I

Usolid ‘
(Usolid * ) Az
Di+1,j = Pij T At (ui—|—1/2,j - Usolid)



Modification on Laplace Equation

pAx
Di+1,j = Di,j T+ _At (Uz'+1/2,j - usolid)
> Usolid
o . o Il
Gpi . - Pij+1k = Pijk+l B — w125k N Vija1/2.k — Vij—1/2.k
ﬂ ~Picljk — Pig-1k — Pigk=1 | _ Ax Axr
P Ax? L Wi j k41/2 = Wi j k—1/2

Ax



Summary

ou
— 4+ u-Vu+ Vp =q
ot 0
I I I
f,(U) f,@ ()
Du . .
) i 0 Advection/Transportation
—*  —advected —
4 ou =g Body Forces u =u +Alg
ot
ou 1
’ —u —Vp =0 o Ap —d
ot Pressure/Incompressiblity At
—n+1 >
7= U =0 ——Vp
s.t. V.-u=0 5




Where is the Water?

» Marker particles
initially each Fluid cell in the MAC grid will be allocated N
particles (e.g. N = 4).
Move particles in the incompressible velocity field

update cell properties (the cell contains any particles is marked
as Fluid).

» From particles to Water surface
Implicit function: f(x) = distance to the nearest particle —r

Sample f(x) with a high resolution grid. =~

Marching Cube to find Iso-surface



Water and Level Sets

» Represent the surface using an implicit function
{Z | o) =0}

One popular choice: Signed Distance Function
Distance to the nearest point on the surface
Positive outside, negative inside.

Some nice properties:
Vo-n=1
n=V¢
» Evolution of this function: advection

D¢
'
Dt

Above properties may not be preserved. Periodically
recalculate the distance function.



Reference

» More details on Level Sets:

Book:“Level Set Methods and Dynamic Implicit Surface” by
Stanley Osher and Ronald Fedkiw.

» A nice overview on Fluid Simulation

SIGGRAPH 2007 Course Notes, “Fluid Simulation” by Robert
Bridson and Matthias Muller-Fischer.

» Libraries to Solve Sparse Linear System

SparselLib:
PARDISO or IML (Intel Mathematic Library).

» Surface Reconstruction
Marching Cube,

Poisson Surface Reconstruction,


http://math.nist.gov/sparselib++/
http://math.nist.gov/sparselib++/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://local.wasp.uwa.edu.au/~pbourke/geometry/polygonise/
http://www.cs.jhu.edu/~misha/
http://www.cs.jhu.edu/~misha/

Thanks!



